首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用SEM、TEM以及EBSD技术对经过不同温度、不同时间退火低碳高硅中锰钢(锰含量7.6%)的组织和性能进行研究.结果表明:退火温度及退火时间对于中锰钢强度和塑性有重要影响.当退火温度为680℃时塑性最好,且随着退火时间的延长塑性逐渐增加,强塑积最高可达到30 GPa%.不同温度退火后的组织均为铁素体和残留奥氏体两相,使用EBSD技术可以发现在晶界处呈现薄膜状的大量残留奥氏体,薄膜状残奥产生的TRIP效应能够有效增加中锰钢的伸长率.  相似文献   

2.
采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、电子探针(EPMA)、室温拉伸等研究了0.1C-7.2Mn钢两相区温轧淬火处理后合金元素配分对碳化物、残留奥氏体、力学性能及加工硬化行为的影响.结果 表明:随着退火时间的延长,经两相区保温后淬火(I&Q)处理的试验钢初始组织中多边形马氏体转变为板条状铁...  相似文献   

3.
研究了650℃下退火时间对冷轧Fe-0.14C-5Mn钢的组织结构和力学性能的影响规律,利用SEM进行了组织结构表征,采用XRD法测量了残留奥氏体量,通过拉伸试验机测试了钢的单轴拉伸性能。结果表明,退火过程中发生奥氏体逆转变,退火1min以后即形成20%以上的亚稳奥氏体;随退火时间的延长,抗拉强度(Rm)逐渐升高,屈服强度逐渐降低;断后伸长率(A)和强塑积(Rm×A)先升高而后降低,在650℃退火10 min时塑性(46%)和强塑积(46 GPa%)获得最大值。分析认为高含量亚稳奥氏体相的TRIP效应以及超细的晶粒尺寸是获得超高强度、超高塑性及高的强塑积的主要原因。  相似文献   

4.
分别采用退火和退火-时效工艺来调控热轧态Fe-10.2Mn-0.41C-2.2Al-0.6V中锰钢中的奥氏体体积分数、奥氏体稳定性及VC析出来优化中锰钢的力学性能组合。结果表明,经退火-时效热处理后试验钢的屈服强度、抗拉强度和伸长率均获得提升。大量的纳米级VC颗粒是促进中锰钢屈服强度增加的主要因素。  相似文献   

5.
对0.1C-5Mn中锰钢冷轧后在650℃进行不同保温时间的两相区逆相变退火处理,利用电化学充氢和慢应变速率拉伸(SSRT)实验研究了其氢脆敏感性。结果表明,冷轧后中锰钢在退火过程中发生奥氏体逆转变,在退火10 min时可获得优异的强度和塑性配合。随着退火时间延长,可扩散H含量及氢脆敏感性增加,特别是氢脆敏感性的增加幅度十分显著。充氢断口起裂区呈现典型的空心韧窝及包含奥氏体(变形后转变为马氏体)晶粒的实心韧窝的混合断裂模式,这种实心韧窝本质上是在应力作用下氢致裂纹沿奥氏体与铁素体的界面萌生与扩展而形成的一种脆性沿晶断裂。氢脆断裂行为主要与退火过程中逆转变奥氏体的含量及其机械稳定性等因素有关。  相似文献   

6.
采用SEM、TEM、XRD、室温拉伸等手段,研究了0.1C-7.2Mn钢两相区温轧淬火配分处理钢的组织形貌、碳化物析出、残留奥氏体体积分数及其中的C含量及力学性能。结果表明,随着温轧压下率的增大,两相区温轧淬火配分处理后试样的马氏体板条得到细化并逐渐平行于轧制方向;两相区温轧淬火配分处理后试样的显微组织由马氏体和残留奥氏体组成,并且有碳化物析出;随着温轧压下率的增大,碳化物的平均尺寸粗化,残留奥氏体的体积分数逐渐升高,并且残留奥氏体中的C含量先升高后降低,屈服强度和抗拉强度均先升高后降低,伸长率先降低后升高。当温轧压下率为80%时,强塑积达到最高31.50 GPa·%。  相似文献   

7.
冶炼了含1.0%~1.5%C、5.0%Mn(质量分数)的中锰钢,热轧后水冷至600、630和660℃保温1 h炉冷以模拟卷取工序,并进行了在600、640、680和730℃保温1~16 h后炉冷的退火处理。通过金相分析、X射线衍射(XRD)、电子背散射衍射(EBSD)和拉伸试验研究了模拟的卷取温度和退火工艺对钢的微观组织和力学性能的影响。结果表明:模拟不同温度卷取的中锰钢组织均由马氏体、少量贝氏体和4.5%(体积分数)左右的残留奥氏体组成,力学性能变化不明显;退火后钢中残留奥氏体含量显著增加,且随着退火温度的升高和保温时间的延长,残留奥氏体由片条状转变为块状,钢的屈服强度降低,抗拉强度先升高后降低,断后伸长率升高。经680℃保温10 h炉冷退火的钢中残留奥氏体最稳定,力学性能最佳,抗拉强度为890MPa,断后伸长率达29%。提高退火温度和缩短保温时间使钢中残留奥氏体稳定性降低,TRIP效应减弱,力学性能降低。  相似文献   

8.
采用扫描电镜(SEM)和X射线衍射(XRD)和单轴拉伸实验等研究了自主设计的"预淬火+双相区退火"热处理工艺对成分为0.15C-5Mn的中锰钢显微组织和力学性能的影响。结果表明:随着退火温度的升高,实验钢抗拉强度逐渐升高,屈服强度逐渐降低,伸长率和强塑积先升后降,此结果与相变诱导塑性(TRIP)效应有关;随着退火时间的延长,实验钢抗拉强度先增后降,屈服强度逐渐降低,伸长率和强塑积先增后降;当热处理工艺为"800℃保温30 min水淬+655℃退火4 h空冷"时,实验钢可以获得最佳组织和力学性能,此时其残留奥氏体的体积分数为25%,抗拉强度为1250 MPa,伸长率为37%,强塑积达到46 GPa·%。实验钢的高强度和高塑性是由超细晶组织和TRIP效应共同决定的。  相似文献   

9.
低碳Si-Mn系Q&P钢两相区的退火热处理工艺   总被引:1,自引:0,他引:1  
研究一种新型的两相区不同退火温度的淬火和碳再分配热处理工艺对低碳硅-锰系Q&P钢的显微组织、精细结构的影响,并和奥氏体区退火的Q&P热处理工艺进行对比。通过SEM、TEM分析发现,采用两相区退火的Q&P工艺室温组织为板条马氏体、铁素体和薄膜状残留奥氏体。残留奥氏体以两种形态存在:处于马氏体板条间的薄膜状和位于原奥氏体晶界处的块状。两相区热处理后的Q&P钢,不仅抗拉强度高达1000 MPa以上,其伸长率也高达23%以上,体积分数高达11%的残留奥氏体在组织中起到了相变诱发塑性的作用。  相似文献   

10.
研究了BTW热轧中锰钢MAG焊焊接性能,利用金相显微镜、拉伸试验机、冲击试验机、维氏硬度计等分析了焊接接头组织结构、力学性能等。实验结果表明,焊接接头平整、光滑,未发现夹渣、宏观裂纹等焊接缺陷。焊缝室温组织由铁素体和奥氏体组成,热影响区奥氏体晶界和晶粒内部有碳化物析出。焊接接头力学性能高于母材,室温抗拉强度在750 MPa以上,焊缝区冲击功为116 J。焊接接头热影响区显微硬度高于焊缝显微硬度,焊缝清根部显微硬度高于焊缝表面显微硬度。清根处焊缝显微硬度为290 HV,热影响区显微硬度在300 HV以上,焊接接头在(160 mm,180°)的弯曲试验中表现为合格。  相似文献   

11.
采用D-ART(两相区形变-奥氏体逆相变)退火热处理工艺,研究不同两相区压缩量对试验钢组织演变、残留奥氏体含量与断裂性能的影响规律。结果表明:试验钢经两相区压缩退火后,获得铁素体、奥氏体与马氏体等多相组织,随压缩量由零增加到15%,残留奥氏体含量由15. 3%增加到23. 4%,其稳定性逐渐增强,C元素配分行为明显;对比未变形退火试样性能,压缩10%和15%的退火试样断后伸长率显著提高,分别达到35. 8%、42. 0%,强塑积最大值可达到35 490 MPa·%;压缩退火试样断口韧窝均匀,断裂性能得到有效改善。  相似文献   

12.
研究了升温进入两相区淬火与奥氏体化后降温进入两相区淬火对960 MPa级调质型超高强钢组织性能的影响。结果表明:升温淬火工艺获得板条马氏体+针状铁素体组织,随着两相区淬火温度从800 ℃升高至850 ℃,强度提高,冲击性能变化较小;降温淬火工艺获得板条马氏体+多边形铁素体组织,随着两相区淬火温度从750 ℃降低至650 ℃,强度和冲击性能基本上保持不变。与常规QT工艺相比,试验钢升温和降温进入两相区淬火工艺后的强度均略有降低,但冲击性能均明显改善,其中降温淬火工艺冲击性能的改善更为明显。  相似文献   

13.
中锰钢在逆转变奥氏体(Austenite Reverted Transformation,ART)退火处理后具有优异强塑性,符合第三代汽车用先进高强度钢的发展要求。本文分析了ART退火工艺与中锰钢强塑机制的关系,概述了退火温度和时间对其综合力学性能的影响,并讨论了中锰钢(4wt%~8wt%Mn)在塑性变形过程中的主要强塑机制。  相似文献   

14.
研究了升温进入两相区淬火与奥氏体化后降温进入两相区淬火对960 MPa级调质型超高强钢组织性能的影响。结果表明:升温淬火工艺获得板条马氏体+针状铁素体组织,随着两相区淬火温度从800℃升高至850℃,强度提高,冲击性能变化较小;降温淬火工艺获得板条马氏体+多边形铁素体组织,随着两相区淬火温度从750℃降低至650℃,强度和冲击性能基本上保持不变。与常规QT工艺相比,试验钢升温和降温进入两相区淬火工艺后的强度均略有降低,但冲击性能均明显改善,其中降温淬火工艺冲击性能的改善更为明显。  相似文献   

15.
利用SEM和室温拉伸试验,研究了两相区温度对IQ&P处理0.1C-7Mn钢组织和力学性能的影响。结果表明,随两相区温度升高,试样的力学性能先升高后降低,两相区温度为660 ℃时,试样的力学性能最优,得到最高强塑积21.2 GPa·%。在较高和较低的两相区温度下进行IQ&P处理时,残留奥氏体由于稳定性过高均不会发生马氏体相变。除此之外,两相区温度为660 ℃时,试样的拉伸曲线存在明显的屈服平台,温度升高后,屈服平台消失。  相似文献   

16.
通过扫描电镜观察、拉伸及低温冲击试验,研究了不同淬火工艺对含1%(质量分数)Ni的中锰钢组织和性能的影响。结果表明,随着淬火温度升高,试验钢的屈服强度和抗拉强度先增大后减小,随后再逐渐增大,低温冲击吸收能量具有相同变化趋势;中锰钢的最优调质工艺为900 ℃淬火后于600 ℃回火,其屈服强度、抗拉强度及伸长率分别能达到560 MPa、640 MPa及21.8%,-50 ℃ 冲击吸收能量达到270 J,获得了良好的综合力学性能。调质态试验钢在不同淬火温度下均获得了铁素体和回火马氏体组织,随着淬火温度升高,马氏体比例增加,晶粒尺寸逐渐减小。  相似文献   

17.
通过热处理工艺实验及SEM与TEM组织观察,研究了不同淬火及回火工艺对碳锰钢与中锰钢组织和性能的影响。结果表明,提高锰含量显著降低了实验钢的Ac1和Ac3温度,缩小了两相区范围;随着淬火温度的升高,实验钢的屈服强度、抗拉强度有所降低;随着回火时间的增加,实验钢的冲击功升高;碳锰钢与中锰钢最优淬火温度分别为800~900℃和750~800℃,其屈服强度、抗拉强度分别为818、847和820、878 MPa,-40℃的冲击功在200 J左右,均具有良好的综合性能,中锰钢具有低成本、高强度及高韧性的综合优势。两种实验钢均可获得细小均匀的马氏体组织,马氏体板条束交错分布,随着回火时间的增加,实验钢中大尺寸碳化物的数量有所降低。  相似文献   

18.
采用CR+WR+IA(冷轧+温轧+退火)热处理工艺,研究了两相区退火过程中碳化物演变行为及其对0.1C-5Mn钢组织、性能、残留奥氏体体积分数与稳定性的影响。结果表明:冷轧试验钢经温轧退火处理后,获得了超细晶铁素体与残留奥氏体复相组织,其中退火10 min与30 min试样基体上弥散少量碳化物。伴随碳化物的析出与溶解行为,残留奥氏体体积分数出现先降低后升高的趋势;在退火10 min与60 min组织中,受碳化物与新生奥氏体钉扎作用,使得铁素体以小角度取向差为主,而残留奥氏体以大角度取向差为主;高密度位错、TRIP效应、细晶强化以及析出强化为试验钢提供良好的强塑性。  相似文献   

19.
一、前言普遍认为轴承钢的冶金质量是影响轴承寿命的重要因素之一,日本曾分析本国轴承钢与瑞典SKF及美国产品的差距后,认为SKF轴承寿命高的主要原因是轴承钢的碳化物颗粒细小和分布均匀性。洛阳轴承研究所对国内外七个厂家的GCr15型轴承钢材质对比表明,国内外GCr15型钢中,碳化物的含量基本相近均为15%左右。但国产钢退火组织的碳化物粒度、形态和分布较差,与国外SKF、高周波、山阳等钢材相比,碳化物颗粒较大,大小和分布不均匀。轴承钢球化退火主要目的是获得细小均匀分布的球状碳化物,改善切削性能,使淬火回火后获得适当数量的碳化物和马氏体组  相似文献   

20.
针对0.14C-7Mn热轧中锰钢分别在600、620、640℃进行了10 h的退火试验。结果表明,退火后组织均为板条状铁素体+奥氏体,随着退火温度的升高,奥氏体体积分数增加,奥氏体中的C、Mn含量逐渐降低,导致其力学稳定性降低。试验钢退火后拉伸曲线均表现为连续屈服。随着退火温度的升高,奥氏体体积分数升高且稳定性降低,变形时产生的马氏体增多,因此抗拉强度随着退火温度升高而升高。适量的、稳定性适中的逆相变奥氏体在变形过程中持续相变产生加工硬化,延迟了颈缩的产生,增加了均匀延伸率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号