首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用Gleeble-3800热模拟试验机在温度为800~1000℃、应变速率为0.01~10 s~(-1)、变形程度为70%的条件下对锻态β-CEZ钛合金进行热模拟试验。利用试验数据及Prasad判据绘制了真应力-真应变曲线和加工图,研究了该合金在α+β两相区和β单相区的高温变形行为、变形失稳现象和变形机制。结果表明:本实验条件下β-CEZ钛合金表现出动态回复和动态再结晶2种软化机制,在α+β两相区流动应力达到峰值后随应变的增大而缓慢下降,在β单相区流动应力达到峰值后发生不连续屈服现象快速下降一段后趋于稳定;功率耗散率η出现极大值的区域在α+β两相区为850~890℃/0.01~0.05 s~(-1),是片层α相球化的区域;在β单相区为940~980℃/0.2~0.6 s~(-1),是动态再结晶区域;流动失稳区为800~850℃/0.1~10 s~(-1),850~900℃/0.1~5 s~(-1),900~1000℃/1~10 s~(-1),失稳现象在α+β两相区表现为绝热剪切带,在β单相区表现为不均匀变形。  相似文献   

2.
对Monel K-500合金对试样进行了时效处理,让其析出大量碳化物。使用Gleeble-3800热模拟机对Monel K-500合金试样进行了高温压缩试验,研究了该合金在变形温度850~1150℃,应变速率0.01~10 s~(-1)时的流动应力行为。建立了该合金的热压缩本构方程。根据试验数据建立了真应变0.8的热加工图。使用光学显微镜进行了组织分析,确定了合金压缩变形的加工"安全区"和"失稳区"。结果表明:在变形温度850℃、应变速率0.1 s~(-1)时合金开始动态再结晶;合金的热变形激活能为375.32611 k J/mol。合理的热加工参数是:应变速率0.1~0.5 s~(-1)、变形温度1000~1150℃。此时耗散功率在40%左右,再结晶充分,组织细小、均匀。  相似文献   

3.
使用Gleeble-3800热模拟试验机在850~1050℃、应变速率0.01~10 s~(-1)、变形程度为70%的条件下对铸态TB9钛合金进行热变形行为研究。通过Arrhenius双曲正弦方程和Z参数建立了TB9钛合金热变形的本构方程。结果表明:TB9钛合金流变应力随变形温度升高而降低,随应变速率升高而升高;在本试验条件下,TB9钛合金软化机制主要为动态再结晶,随温度降低动态再结晶现象变得明显;所建立的本构方程与试验值吻合较好,为TB9钛合金有限元模拟及制定锻造工艺提供了理论依据。  相似文献   

4.
采用Gleeble-3500热模拟试验机在温度为400℃~500℃,应变速率为0.01 s~(-1)~10 s~(-1)条件下对Al-7.0Zn-2.9Mg合金进行热压缩试验,研究该合金的热变形行为及热加工特征,建立了应力-应变本构方程和加工图。结果表明,Al-7.0Zn-2.9Mg合金在热压缩变形过程中,随着应变速率的增加和变形温度的降低,合金流变应力逐渐增大,流变应力达到峰值后曲线呈现稳态流变特征;合金在试验条件下的平均变形激活能为157.8 k J/mol。真应变为0.5的加工图表明,该合金在400℃~500℃高温变形时安全区域主要存在于低应变速率的条件下,较合适的加工温度为450℃~475℃,应变速率为0.1 s~(-1)~0.01 s~(-1)。  相似文献   

5.
获得准确的钛合金塑性变形特征和热加工条件,是钛合金挤压、轧制等塑性加工工艺参数选择的重要依据。本实验研究了TA15钛合金在应变速率0.01~20 s~(-1)、变形温度850~1050℃条件下的压缩变形行为、组织特征,采用Arrhenius双曲正弦函数模型推导出了TA15本构方程,基于动态材料模型建立了合金在真应变0.1~0.7时的热加工图。结果表明,在本实验的应变速率和变形温度的条件下进行压缩变形,随着变形温度的升高,合金中的α相逐渐向β相转变;随着应变速率的提高,α相向β相转变的程度逐渐减小。根据热加工图确定了合金的两个热加工安全区域:(1)变形温度950~1050℃、应变速率0.01~0.37 s~(-1);(2)变形温度875~950℃、应变速率1.65~13.5 s~(-1)。  相似文献   

6.
采用热压缩实验研究2050 Al-Li合金在变形温度为340~500°C、应变速率为0.001~10 s~(-1)范围内的热变形行为。分析摩擦及温度变化对流变应力的影响,并对流变曲线进行修正处理;基于动态材料模型及修正后的真应力数据,获得真应变为0.5条件下合金的加工图;利用金相显微镜对压缩试样显微组织变化进行观察。结果表明,在热变形过程中材料的摩擦及温度变化对流变应力有显著影响;合金合适加工区域位于变形温度为370~430°C、应变速率为0.01~0.001 s~(-1)区域,以及变形温度为440~500°C、应变速率为0.3~0.01 s~(-1)区域内;失稳区位于高应变速率下(3~10 s~(-1))所有温度范围内;动态回复和动态再结晶是2050 Al-Li合金在稳定加工区域内主要变形机理,而在失稳区合金变形机理主要表现为流变集中。  相似文献   

7.
在不同变形温度(T=850~1050℃)和不同应变速率(ε觶=0.001~5s~(-1))下采用Gleeble~(-1)500D热模拟试验机对热等静压态TC4钛合金进行了高温热压缩试验,分析了真应力-真应变曲线特征及热变形参数对显微组织的影响,建立适用于热等静压态TC4钛合金高温流动行为的Arrhenius方程及DMM(动态材料模型)加工图。结果表明:峰值应力随应变速率的增大及变形温度的降低而增大;显微组织随变形温度升高发生马氏体相变,随应变速率增大,β相析出次生α'相,且T=900℃、ε觶=0.01s~(-1)时获得(α+β)双态组织,表明该条件能够改善材料加工性能。误差分析表明,峰值应力计算值与试验值平均相对误差绝对值仅6.77%,证明建立的本构方程能够准确预测材料高温变形时的流动应力。加工图分析表明材料流动失稳区为T=850~950℃、ε觶0.6 s~(-1),最佳加工区间为T=850~950℃、ε觶=0.01~0.1s~(-1)。  相似文献   

8.
采用Gleeble-1500热模拟实验机在温度为700~1200℃,应变速率为0.002~5 s~(-1)、最大变形量为55%条件下对特大型支承辊Cr4合金钢进行热压缩试验,研究了该合金的热变形行为及热加工特征,建立了Cr4合金钢在试验条件下的热加工图。结果表明:在其他变形参数恒定时,Cr4合金钢的热变形真应力随应变速率的升高而逐渐变大,随变形温度的提高而急剧降低;在变形温度为750~900℃,应变速率为0.002~0.01 s~(-1),变形温度为750~800℃,应变速率为0.049~2.718 s~(-1)和变形温度为800~1050℃、应变速率为0.1~4.482 s~(-1)的3个区域内易产生流变失稳现象;动态再结晶是触发材料流变软化及稳态流变的主要原因,Cr4合金钢的安全热加工区域的变形温度在950~1150℃之间、应变速率在0.018~0.223 s~(-1)之间。  相似文献   

9.
利用Gleeble-3500热模拟试验机进行了高温压缩试验,研究了Ni-Cr-Co-Mo合金在变形温度950~1080℃、应变速率0.01~10 s~(-1)下的热变形行为。基于动态材料模型构建了合金热加工图。结果表明:合金在试验条件下具有正应变速率敏感性。合金的平均热变形激活能为566.758 kJ/mol。当应变为0.4时,合金的流变失稳区域较大,说明该合金在大应变时加工难度很大。在变形温度为1000℃时,随着应变速率降低,动态再结晶更加充分。合金最佳工艺参数为变形温度1000~1050℃、应变速率0.01~0.1 s~(-1)。  相似文献   

10.
本文为研究TA10钛合金组织形貌与力学性能的关系,通过热模拟试验,对TA10钛合金在800℃~1050℃变形温度范围内和不同应变速率下(0.01s~(-1),0.1s~(-1),1s~(-1)和5s~(-1))进行热变形研究。通过对真应力-真应变分曲线的分析,探索了相应的软化机制,确定了热变形激活能,建立了本构关系。研究了峰值应力与温度和变形速率之间的函数关系,为TA10钛合金的多向锻造加工控制提供理论基础。  相似文献   

11.
使用Gleeble-3500热模拟试验机在变形温度为800~1000℃、应变速率0.001~10 s~(-1)以及真应变为1.2的条件下对TB17钛合金进行热变形行为研究。根据热压缩数据,分析真应力-真应变曲线,计算TB17钛合金变形激活能,并建立了TB17钛合金应力-应变本构模型,对金相组织进行分析,并进行了本构模型的验证。结果表明,TB17钛合金在热压缩变形过程中,出现动态回复和动态再结晶现象,在低应变速率0.001和0.01 s~(-1)下,以动态再结晶为主要软化机制,在高应变速率1和10 s~(-1)下主要以动态回复为软化机制;流变应力随应变速率的下降和变形温度的升高而降低;峰值应力计算值和实验值的平均误差为6.5%,表明该模型有很高的精确度。研究为TB17钛合金塑性加工过程的模拟和控制提供了参考。  相似文献   

12.
采用Gleeble-3500热模拟试验机对轧态Nitinol 60形状记忆合金进行等温恒应变速率拉伸试验,基于动态材料模型的加工图技术,研究了该合金在650~850℃和0.01~1 s~(-1)范围内的高温变形特性,并优化了其适宜的高温变形参数范围。结果表明,加工图中失稳区位于低温、高应变速率区,范围为650~776℃、0.075~1 s~(-1),对应的失稳现象为局部塑性流动。加工图中有2个η峰值区,范围分别为690~750℃、0.01~0.026 4 s~(-1)和750~838℃、0.01~0.050 5 s~(-1),η最大值分别达到了0.36和0.38,对应的变形机制均为动态再结晶,这2个区域为Nitinol 60合金适宜的热拉伸变形工艺参数范围。  相似文献   

13.
采用Gleeble-1500D热/力模拟实验机,在变形温度为800~1050℃,应变速率为0.01~5 s~(-1)的条件下,对TA10钛合金做热压缩实验,并根据动态材料模型(DMM)建立不同应变下TA10钛合金的热加工图,分析应变对耗散效率因子、失稳参数和热加工图的影响。结果表明:随着应变的增加,峰值耗散效率因子和流变失稳区均呈现出规律性的变化,都出现了先减小后增大的现象,流变失稳区由小应变时的一个失稳区逐渐变为大应变时的两个失稳区;适用于TA10钛合金的热加工工艺参数范围是变形温度为950~1050℃、应变速率为0.01~0.8 s~(-1)。  相似文献   

14.
《锻压技术》2021,46(7):190-198
采用Gleeble-3800热模拟试验机,对2205双相不锈钢进行热变形研究,变形温度为850~1100℃,应变速率为0.01~10 s~(-1),真应变为0.91。绘制了流动应力-应变曲线,根据动态材料模型构建了不同应变下的热加工图,并且采用EBSD分析了微观组织。结果表明:流动应力随着变形温度的降低和应变速率的增大而增大;应变的增加使得耗散值η也在逐渐增大;失稳区域(925~1075℃/0.01~0.23 s~(-1))中的1000℃/0.01 s~(-1)和1050℃/0.01 s~(-1)变形条件下铁素体相的部分晶粒长大,而部分奥氏体相所受应变能较小,仍为等轴状晶粒,表现出明显的应变分布不均匀现象;最佳加工区域主要集中在950~1100℃/4.9~10 s~(-1)下,该区域所对应的1000℃/10 s~(-1)和1050℃/10 s~(-1)变形条件下,耗散值η达到64%的主要原因为铁素体相中发生了较多的再结晶。  相似文献   

15.
以20CrNi2Mo低碳钢为研究对象,采用DIL805A/T热模拟试验机在变形温度为900~1050℃、应变速率为0.001~1s~(-1)条件下进行等温单道次轴向热压缩试验,建立了20CrNi2Mo钢高温压缩的最大变形抗力本构方程和热加工图,并观察了热变形组织。结果表明:真应变值为0.1~0.5的热加工图中均存在两个功率耗散峰区,且随着应变量的增加峰区I逐渐向变形温度较高的区域移动,峰区II向应变速率增大的区域移动。热加工图中失稳区域随着应变量的增加先逐渐减小后又逐渐增大,在ε=0.4时,失稳区域最小,此应变量下20CrNi2Mo钢较优的热加工工艺区间为:变形温度940~960℃、应变速率0.001 s~(-1)或温度1025~1050℃、应变速率0.01~0.06 s~(-1)。  相似文献   

16.
采用热压缩试验研究了铸态C-276镍基高温合金在950~1250℃和0.01~10 s~(-1)条件下的热变形行为。结果表明:该合金的热变形流变应力随着变形温度的增加及应变速率的降低而减小;当变形条件为1250℃、0.1 s~(-1)时,合金在热压缩过程中发生了动态应变时效。基于流变应力数据建立了合金的热变形本构方程;基于动态材料模型建立了合金在不同应变下的热加工图。通过加工图和微观组织观察优化了合金的热变形参数。合金的表观激活能为497k J/mol铸态C-276合金适宜的热加工区域为1050~1250℃和应变速率0.1~1.0 s~(-1)。  相似文献   

17.
对GH4720Li合金在1080~1180℃、应变速率为0.01~10 s~(-1)条件下的单道次压缩变形行为进行了研究。利用压缩实验的应力-应变关系曲线,计算了变形条件下的热变形激活能,建立了相应的本构方程和热加工图。结果表明:动态再结晶是GH4720Li合金的主要软化机制;合金在1120~1180℃、应变速率在0.1~1 s~(-1)、真应变0.7时实现完全动态再结晶,最佳变形温度为1120~1140℃;γ′相的析出行为引起峰值应力和热变形激活能显著变化;热变形激活能在1160℃,达到最小值602 k J/mol;应变速率达到1 s~(-1)以上,合金出现失稳现象。  相似文献   

18.
在电子万能拉伸试验机上对TB8钛合金进行了恒应变速率超塑性拉伸试验(变形温度为720~880℃,应变速率为0.000 1~0.01s~(-1)),研究了拉伸流变行为,计算了超塑性拉伸变形激活能和相应的应力指数,建立了TB8钛合金应力-应变本构模型。结果表明,在同一应变速率下,流变应力随变形温度的增加而减少,同一变形温度下,流变应力随应变速率的增加而增加。在变形温度为840℃,应变速率为10~(-4) s~(-1),合金的伸长率最大,为356%;超塑性拉伸变形激活能和应力指数分别为251.25kJ/mol、2.389 5。  相似文献   

19.
通过Ti1023合金等温压缩试验,得到不同高温变形条件下真应力-应变曲线和热加工图。通过加工硬化和动态软化效应分析了变形参数对Ti1023合金应力-应变曲线形态和峰值应力的影响。结果表明:在中低温区域和大应变速率条件下,变形参数对流动应力影响较大,高温区域和小应变速率对流动应力影响较小。通过对Ti1023合金热加工图的分析,发现合金的热变形能量分配主要受应变速率的影响。热加工图中主要存在两个变形失稳区和一个临界失稳区,失稳机制主要包括局部塑性流动和绝热剪切等。Ti1023钛合金的较优锻造区间为:变形温度760~780℃、应变速率5×10~(-4)~10~(-1)s~(-1)。  相似文献   

20.
为了考察6063铝合金在较高应变速率下的变形行为,采用Gleeble-3500热模拟试验机对合金在变形温度390~510℃和应变速率1~20 s~(-1)进行热压缩试验。结果表明:流动应力随着变形温度的升高而降低,随着应变速率的增大而升高。在应变速率为1~10 s~(-1)时,流动应力随着应变增加逐渐进入稳态流动阶段;在应变速率为20 s~(-1)时,流动应力达到峰值后随应变量增加而下降。通过热加工图获得适宜的热变形工艺参数为:变形温度460~490℃,应变速率2~6.3 s~(-1)。合金在失稳区发生局部流动和剪切变形,在安全加工区域组织更均匀。随着温度升高和应变速率下降,位错密度减小,合金发生动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号