首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel, low-expansion experimental Ni–Cr–Al–Ti–Si bond-coating alloy was investigated in the as-cast state concerning its phase stability, oxidation resistance in air, and interdiffusion with single-crystal IN-100 at 900, 1000, and 1100°C. Isothermal oxidative thermogravimetry was employed up to 500 hr. Interdiffusion was compared to a commercial Ni–Co–Cr–Al–Y alloy on IN-100. Oxidized Ni–Cr–Al–Ti–Si specimens and diffusion couples were characterized by metallography, SEM, EDX, XRD, and XRF. The Ni–Cr–Al–Ti–Si alloy provides good oxidation resistance in air at least up to 1000°C. The alloy is an alumina former. Due to its coarse microstructure, other oxides (e.g., rutile) may form and considerably dominate the oxidation behavior. The kinetics of oxidation were correlated with temperature, formation of phases, and morphology of oxides. Interdiffusion fluxes between Ni–Cr–Al–Ti–Si and IN-100 were mainly directed to the superalloy. They were faster than in Ni–Co–Cr–Al–Y/IN-100 diffusion couples.  相似文献   

2.
The early oxidation behaviors of Mg–Y alloys (Y = 0.82, 1.09, 4.31 and 25.00 wt.%) oxidized in pure O2 have been investigated at high temperatures. The results showed that the oxidation behaviors of the Mg–Y alloys (Y = 4.31 and 25.00 wt.%) obeyed a parabolic law, while that of the Mg–Y (Y = 0.82 and 1.09 wt.%) exhibited both parabolic and linear kinetics depending on the oxidation temperature. Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses indicated that an oxide film with a single structure composed of MgO and Y2O3 had formed. Moreover, the higher the oxidation temperature was, the thicker the oxide film was. Finally, the corresponding oxidation mechanism has been discussed, and the improved oxidation resistance of the Mg–Y alloys can be due to the formation of a continuous Mg-dissolving Y2O3 protective film.  相似文献   

3.
The oxidation behavior of Fe–20Cr–5Al–(0.5–5)Si and Fe–(12–20)Cr–(5–7)Al–(1–2)Si alloys extruded into honeycomb structures has been investigated at 1150°C in air for up to 500 hr. The oxidation weight gains decrease with increasing Si and Cr contents in the 5-Al alloys. Si additions are more efficient than Cr additions to reduce the weight gain. Increasing Si content in the 5-Al alloys suppresses the formation of an iron-chromium complex oxide, forming mullite and vitreous silica in the scale, although the location is not clearly indicated. The 5-Si alloy shows anisotropy in elongation of the honeycomb specimen during oxidation in the Fe–20Cr–5Al–xSi alloys, whereas alloying with Si and Cr does not improve the oxidation resistance of the 7-Al alloys significantly. These results are explained by Wagner's theory of a secondary getter. However, we point out additionally that the difference between Si and Cr in the Pilling-Bedworth ratio and the solubility of their oxides in the Al2O3 scale may contribute to the significant effect of Si additions. Finally, this paper demonstrates that the selected Fe–Cr–Al–Si honeycombs having walls 200 m thick show excellent oxidation resistance over 500 hr at 1150°C in air. The time to catastrophic oxidation is roughly proportional to the wall thickness in extruded honeycombs.  相似文献   

4.
The effects of Si, W and W–Mo on the isothermal oxidation behaviors of Nb/Nb5Si3 in situ composites in static air at 1000 and 1200 °C for 20–100 h were investigated on as-cast materials. The results show that the oxidation kinetics of each alloy was not changed whether at 1000 or 1200 °C, and the oxidation mechanism were not changed. The oxidation resistance of Nb/Nb5Si3 in situ composites was sensitive to Si content, and the oxidation rate of Nb-10Si alloy was more than twice as many that of Nb–20Si alloy. By alloying of W, the oxidation resistance of Nb–20Si–10W alloy was improved significantly, because the WO3 scale can provide the adherence for the creaked Nb2O5 scale and reduce the diffusion of oxygen through the scale. Comparing to alloying with W, the poor oxidation resistance of Nb–20Si–10W–10Mo alloy was attributed to the evaporation of MoO3 and highly porous scale.  相似文献   

5.
Ul-Hamid  A. 《Oxidation of Metals》2002,58(1-2):41-56
A study was conducted to investigate the effect of Y addition on the isothermal-oxidation behaviors of Ni–10Cr, Ni–10Cr–0.5Y, Ni–10Cr–5Al, and Ni–10Cr–5Al–0.5Y alloys. The alloys were oxidized in air for 50 hr at 1000°C. The oxides formed on the alloys were characterized using primarily cross-sectional transmission-electron microscopy techniques along with light microscopy, scanning-electron microscopy, and X-ray diffraction. Although the Al-containing alloys showed comparatively better oxidation behavior, all alloys exhibited nonprotective scaling, as suggested by the thick oxides formed. The major component of the outer oxide was NiO. However, modified Y-containing alloys formed protective layers (i.e., -Cr2O3 for NiCrY and -Al2O3 for NiCrAlY) at the scale–alloy interface following the nonprotective scaling. The spalling resistance of the modified Y-containing alloys was better than their counterpart unmodified Y-free alloys, while their overall oxidation mechanism remained unchanged after Y addition.  相似文献   

6.
Dutta Majumdar  J.  Mordike  B. L.  Roy  S. K.  Manna  I. 《Oxidation of Metals》2002,57(5-6):473-498
This study concerns an attempt to enhance the resistance to high-temperature isothermal and cyclic oxidation of Ti in dry air by laser-surface alloying (LSA) with Si and Si+Al. LSA was carried out by codeposition of alloy powders during lasing under the predetermined, optimum-processing routine that ensured formation of a compact, well-adherent, crack-free and homogeneous alloyed zone. The results of oxidation kinetics in the temperature range 950–1150 K for 1–400 hr indicate that surface alloying with Si imparts excellent oxidation resistance up to 1050 K. However, at a higher temperature of 1150 K, surface alloying with 3Si+Al yields a better resistance to oxidation. A detailed characterization of the microstructure and distribution of the phases within the scale and alloyed zone following oxidation studies has been undertaken to suggest the possible mechanism for enhanced oxidation resistance of Ti imparted by laser-surface alloying.  相似文献   

7.
Lee  Dong -Bok  Simkovich  G. 《Oxidation of Metals》1989,31(3-4):265-274
The oxidation kinetics of (50–60) wt.% Mo-(35–47) wt.% Cr-(2–5) wt.% Si and (30–40) wt.% Mo-(30–40) wt.% W-(27–37) wt.% Cr-(0–3) wt.% Si alloys were studied between 1000 and 1200°C in a pure oxygen atmosphere. The oxidation of Mo-W-Cr-Si alloys resembled that of Mo-Cr-Si alloys but was much more oxidation resistant. In general, oxidation resistance increased with increasing Cr and Si content. Alloys with good oxidation behavior had a thin outer Cr2O3 layer and an internal oxidation zone (in both Mo and Mo-W alloys). Alloys displaying poor oxidation behavior had a porous Cr2O3 layer (in Mo alloys) or layers of oxides of W and Cr (in Mo-W alloys). Although the alloy systems were not truly oxidation resistant, definite improvement in oxidation resistance was achieved.  相似文献   

8.
Titanium aluminide (Ti3Al–Nb) has potential for high-temperature applications because of its low density and high-temperature strength. This research is aimed at improving the high-temperature oxidation resistance of a Ti3Al–Nb alloy by modification of its composition. The oxidation rates of Ti3Al–Nb alloys were measured from 600 to 900°C in air. The oxide layer was examined by X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. The experimental results reveal that alloys with added Nb tend to form denser oxide layers and that oxidation rate can be reduced by increasing Nb content (up to 11 at.% in this study), which is in good agreement with other investigators. The only exception is a Ti65Al25Nb10 alloy, which shows better oxidation resistance than the commercial Ti65Al24Nb11 alloy. The oxidation resistance of Ti65Al25Nb10 alloy can also be improved slightly by the addition of small amounts of Si or Cr. An increase in the oxidation resistance of Ti65Al25Nb10 alloy containing Y was observed at 900°C but not at 800°C or below. The parabolic oxidation rate equation is adequate to describe the high-temperature oxidation reaction of the Ti3Al–Nb alloys in the atmosphere.  相似文献   

9.
High-temperature oxidation behavior of a wrought Ni-Cr-W-Mn-Si-La alloy   总被引:1,自引:0,他引:1  
An investigation was carried out to study the kinetics and products of oxidation of a wrought Ni–Cr–W–Mn–Si–La alloy at temperatures in the range of 950 to 1150°C. Oxidation kinetics were evaluated from measurements of weight change, metal loss, and internal penetration. Analytical electron microscopy, scanning electron microscopy, electron probe microanalysis, and X-ray diffraction were used to characterize the scale microstructure. Initially, La was observed to segregate within a surface layer of about 5 m thick, which promoted selective oxidation of Cr and Mn. Oxidation kinetics were found to follow a parabolic-rate law with an activation energy of about 232kJ/mol. During steady-state oxidation, the scale consisted of an inner adherent layer of -Cr2O3 modified by the presence of La and Si, and shielded by an outer layer of MnCr2O4. Most of the La was segregated to grain boundaries of the -Cr2O3 scale, however, Si was homogeneously distributed. It was concluded that the characteristic oxidation resistance of the alloy was related to the synergistic effects of Ni and Cr and to the effective minor additions of La, Si, and Mn; however, the useful life of the scale was limited by rupture and surface depletion in Cr, leading to accelerated internal oxidation.  相似文献   

10.
Xie  D.  Xiong  X.  Wang  F. 《Oxidation of Metals》2003,59(5-6):503-516
The oxidation and hot-corrosion behavior of a Co–Ni–Cr–Al–Y coating produced by high-velocity oxygen fuel (HVOF) with and without an enamel coating were investigated in air at 900°C and in molten 75 wt.% NaCl+25 wt.% Na2SO4 at 850°C. The results show that the enamel coating possesses excellent hot corrosion resistance in the molten salt, in comparison with the HVOF-sprayed Co–Ni–Cr–Al–Y coating alone. In the hot-corrosion test, breakaway corrosion did not occur on the samples with the enamel coating and the composition of the enamel did not significantly change. The oxidation resistance of the Co–Ni–Cr–Al–Y coating, which had good adhesion, was also improved by the enamel coating.  相似文献   

11.
Dunning  J. S.  Alman  D. E.  Rawers  J. C. 《Oxidation of Metals》2002,57(5-6):409-425
The effect of Si and Al additions on the oxidation of austenitic stainless steels with a baseline composition of Fe–16Cr–16Ni–2Mn–1Mo (wt.%) has been studied. The combined Si and Al content of the alloys did not exceed 5 wt.%. Cyclic-oxidation tests were carried out in air at 700 and 800°C for a duration of 1000 hr. For comparison, conventional 18Cr–8Ni type-304 stainless steel specimens were also tested. The results showed that at 700°C, alloys containing Al and Si, and alloys with only Si additions showed weight gains about one half that of the conventional type-304 alloy. At 800°C, alloys that contained both Al and Si additions showed weight gains approximately two times greater than the type-304 alloy. However, alloys containing only Si additions showed weight gains four times less than the 304 stainless. Further, alloys with only Si additions preoxidized at 800°C, showed zero weight gain in subsequent testing for 1000 hr at 700°C. Clearly, the oxide-scale formation and rate-controlling mechanisms in the alloys with combined Si and Al additions at 800°C were different than the alloys with Si only. ESCA, SEM, and a bromide-etching technique were used to analyze the chemistry of the oxide films and the oxide–base-metal interface, in order to study the different oxide film-formation mechanisms in these alloys.  相似文献   

12.
Studies of the simultaneous creep and oxidation of Fe-1Si and Fe-4Si alloys at a constant tensile stress of 16 N· mm–2 at 973–1073 K have shown that scales formed at oxygen partial pressures of 20–1013 mbar were thicker by a factor of 2 than those formed on uncrept specimens. Scales on uncrept alloys comprised alternate layers of wustite and fayalite, whereas scales on crept alloys exhibited an additional external layer of magnetite. Only intergranular oxidation (fayalite) was observed in uncrept alloys, but crept alloys showed both intra- and intergranular oxidation (silica). Uniquely nodular scales were formed only on the Fe-4Si alloy on crept and uncrept specimens. Oxidized, uncrept Fe-1Si showed a fine-grained ferrite substrate which was absent in the crept alloy. It is believed that oxide growth stresses stimulated a recrystallization process.  相似文献   

13.
Mechanisms are proposed to explain the oxidation rate behavior of Fe-8Cr-10Ni alloys to which varying amounts of either Si (0–3%) or Mo (0–6%), or both have been added. The formation and breakdown of a silica sublayer cause significant changes in the oxidation mechanism. The formation of the silica depends on preformation of a Cr2O3 outer layer. The addition of Mo enhances the oxidation protection of Fe-Si alloys by producing an Fe-Mo-Si precipitate in the base metal.  相似文献   

14.
Li  M. H.  Zhang  Z. Y.  Sun  X. F.  Guan  H. R.  Hu  W. Y.  Hu  Z. Q. 《Oxidation of Metals》2002,58(5-6):499-512
Thermal–barrier coatings (TBCs) consist of a magnetron-sputtered Ni–30Cr–12Al–0.3Y (wt.%) bond coat to protect the substrate superalloy from oxidation/hot corrosion and an electron-beam physical-vapor deposited (EB–PVD) 7 wt.% yttria partially stabilized zirconia (YPSZ) top coat. The thermal cyclic life of the TBC system was assessed by furnace cycling at 1050°C. The oxidation kinetics were evaluated by thermogravimetric analysis (TGA) at 900, 1000, and 1100°C for up to 100 hr. The results showed that the weight gain of the specimens at 1100°C was the smallest in the initial 20 hr, and the oxide scale formed on the sputtered Ni–Cr–Al–Y bond coat is only Al2O3 at the early stage of oxidation. With aluminum depletion in the bond coat, NiO, Ni(Cr,Al)2O4, and other spinel formed near the bond coat. During thermal cycling, microcracks were initiated preferentially in the YPSZ top coat along columnar grain boundaries and then extended through and along the top coat. The growth stress of TGO added to the thermal stress imposed by cycling, lead to the separation at the bond coat–TGO interface. The ceramic top coat spalled with the oxide scale still adhering to the YPSZ after specimens had been cycled at 1050°C for 300 cycles. The failure mode of the EB–PVD ZrO2–7 wt.% Y2O3 sputtered Ni–Cr–Al–Y thermal-barrier coating was spallation at the bond coat–TGO interface.  相似文献   

15.
Yanagihara  K.  Suzuki  S.  Yamazaki  S. 《Oxidation of Metals》2002,57(3-4):281-296
The occurrence of external or internal oxidation in Fe–Si alloys is strongly affected by oxidation conditions. In the present study, X-ray diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary-ion mass spectrometry, and glow-discharge optical-emission spectrometry were used for characterizing the microscopic features of oxide layers formed on the (011) surface of an Fe–6 mol.% Si alloy. The starting materials were annealed at 1473 K under dry hydrogen gas and were subsequently annealed at 1123 K under a 75% H2–25% N2 atmosphere with various partial pressures of water vapor. The results show that the microscopic morphology and elemental distribution in oxide layers strongly depend on oxidation conditions. The surface was found to become rough by annealing in higher partial pressures of water vapor. This phenomenon may be induced by internal oxidation. Corresponding to the morphological changes of the surface, changes in the distribution of alloying elements have systematically been characterized in surface layers. These experimental results are discussed in conjunction with thermodynamic data on oxidation of elements.  相似文献   

16.
The formation and development of oxides in Ni–4Al and Ni–4Al–xSi (at.%, x=1, 3, 5) alloys at 5–9×10–6 and 1 atm oxygen pressure at 1073 K have been studied. The oxidation rate increased with an increase of silicon content in the alloy at the early stage of oxidation, but decreased after longer time exposure due to formation of an intermediate layer composed of NiO and spinel (NiAl2O4 and Ni2SiO4) between the top NiO layer and the internal-oxidation zone. This intermediate layer became a barrier for releasing stress, generated by the volume expansion associated with oxidation of solute atoms, resulting in high dislocation density and severe distortion in the internal-oxidation zone for the Ni–Al–Si alloys. In Ni–4Al alloy where no complete intermediate-layer formation occurred, stress was easily released by an enhanced vacancy gradient, and therefore an enhanced vacancy-injection rate into the alloy, resulting in a higher oxidation rate than the situation where a sample was oxidized at an oxygen pressure associated with the dissociation of NiO.  相似文献   

17.
Li  Z.  Gao  W.  Li  S.  Zhang  D.  He  Yedong 《Oxidation of Metals》2001,56(5-6):495-516
Thin films of aluminum, cerium, and yttrium oxides were applied onto the surfaces of Ti3Al–11Nb samples using an electrodeposition technique. The oxidation behaviors of the Ti3Al–Nb alloy, with and without these surface-applied films, were studied in air at 800–1000°C. The results showed that the oxidation rate of the alloy can be reduced by Ce oxide and Y oxide films, and the greatest improvement comes from oxidation of the Y oxide-coated specimens at 800°C. With increasing oxidation temperature, the difference between the Co-oxide and Y-oxide films becomes smaller. The results also indicated that the Ce-oxide and Y-oxide films can significantly improve the oxide scale-spallation resistance. On the other hand, Al-oxide films result in detrimental effects on the oxidation and scale-spallation resistance of the Ti3Al–Nb alloy. Based on the experimental results, the effects of the different surface films on the oxidation mechanism are discussed.  相似文献   

18.
Davis  A. W.  Mahapatra  R. N. 《Oxidation of Metals》2002,57(1-2):181-191
This paper describes the oxidation behavior of Rh–xTi (x=15 and 20 at.%) alloys between 1000 and 1300°C up to a period of 312 hr. The weight gain of arc-melted Rh–15Ti and Rh–20Ti alloys as a function of time was monitored during isothermal exposure in air. Results indicate that the oxidation resistance of Rh–15Ti and Rh–20Ti alloys at 1000 and 1100°C is similar to that of advanced nickel-base superalloys. Rh–xTi alloys also show excellent oxidation resistance beyond the operational limit for nickel-base superalloys. Optical microscopy, scanning-electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD) techniques were used to study the microstructure and morphology of the oxides. These alloys oxidize by forming TiO2 and Rh2O3 complex oxides. The Rh–20Ti alloys displayed lower oxidation resistance than Rh–15Ti alloys.  相似文献   

19.
Ul-Hamid  A. 《Oxidation of Metals》2002,58(1-2):23-40
This study was undertaken to investigate and compare the effects of a yttrium addition on the oxide scale development of -Cr2O3- and -Al2O3-forming alloys under isothermal oxidation conditions. The alloys had a nominal composition (in wt.%) of Ni–30Cr, Ni–30Cr–0.5Y, Ni–30Cr–5Al, and Ni–30Cr– 5–Al–0.5Y. They were oxidized in air for 50 hr at 1000°C. The scale microstructures were characterized using cross-sectional transmission-electron microscopy combined with energy-dispersive X-ray spectroscopy. It was observed that the scale thickness decreases and the scale adherence increases due to the Y addition. The growth direction of -Cr2O3 scale changes from predominately outward to inward while countercurrent diffusion within -Al2O3 is replaced by inward diffusion due to Y modification. It is considered that the ability of Y to scavenge sulfur from the alloy and its segregation to the oxide grain boundaries primarily account for most of its beneficial effects.  相似文献   

20.
The hot-corrosion resistance of Ni–Cr–Al–Y and Ni–17.8 wt.% Si was examined in sulfate and sulfate plus vanadate melts at 973 K. Two salt-deposit compositions were considered: (a) sodium sulfate+50 mole% magnesium-sulfate eutectic and (b) sodium sulfate plus 20 mole% sodium meta-vanadate. Both types of deposit were molten at the test temperature. Cyclic hot-corrosion tests were conducted in a gas mixture consisting of oxygen, sulfur dioxide, and 0.0240 vol.% sulfur trioxide. The hot-corrosion kinetics were evaluated using weight change and the corrosion mechanism deduced from post-test metallography. The results indicate that the nickel–silicon alloy had much better hot corrosion resistance than Ni–Cr–Al–Y under all test conditions considered. The sample preparation process is outlined, the test procedure summarized, and the experimental results are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号