首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Tungsten-coated carbon and copper was prepared by vacuum plasma spraying (VPS) and inert gas plasma spraying (IPS), respectively. W/CFC (Tungsten/Carbon Fiber-Enhanced material) coating has a diffusion barrier that consists of W and Re multi-layers pre-deposited by physical vapor deposition on carbon fiber-enhanced materials, while W/Cu coating has a graded transition interface. Different grain growth processes of tungsten coatings under stable and transient heat loads were observed, their experimental results indicated that the recrystallizing temperature of VPS-W coating was about 1400℃ and a recrystallized columnar layer of about 30μm thickness was formed by cyclic heat loads of 4 ms pulse duration. Erosion and modifications of W/CFC and W/Cu coatings under high heat load, such as microstructure changes of interface,surface plastic deformations and cracks, were investigated, and the erosion mechanism (erosion products) of these two kinds of tungsten coatings under high heat flux was also studied.  相似文献   

2.
A state diagnosis of laser-produced plasma in air generated by a 1064 nm pulse laser was investigated by the Thomson scattering(TS) method. The evolutions of the electron temperature and electron density were obtained as a function of the time delay which ranged from300–3200 ns. The heating effect produced by the 532 nm probe beam with different energies on the air plasma at different interaction times was further studied using a time-resolved optical emission spectroscopy technique. The influence of the probe beam on the electron density was found to be negligible, whereas its influence on electron temperature is evident. In addition, the heating effect of the probe beam on the plasma strongly depends on the energy of the probe beam, and gradually weakens with increasing time delay. Our results are helpful for further understanding the TS method and its application in plasma diagnostics.  相似文献   

3.
Doped graphite GBST1308, mechanically jointed to CuCrZr alloys, will be applied on EAST superconducting as plasma facing material (PFM). Two joint structures called joint-1 and joint-2 were evaluated by means of thermal response tests using electron beam facility. The experimental results showed that the temperature differences of two joints were not significant, and the maximum surface temperature was about 1055℃ at a load of 4 MW/m^2, which had a good agreement with the simulated results by ANSYS code. The results indicated that the doped graphite GBST1308/CuCrZr mock-up can withstand heat flux deposition of 4 MW/m^2 except at the screw-fastened region, and joint-2 could be more suitable to higher heat flux region such as divertor target. But under the higher heat flux, both joints are unacceptable, an advanced PFM and its integration with the heat sink have to be developed, for example, vacuum plasma spraying tungsten coatings on the CuCrZr might be a good choice.  相似文献   

4.
The preliminary experimental results of the generation and diagnostics of highpower ion beams on FLASH II accelerator are reported, The high-power ion beams presently are being produced in a pinched diode, The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow, Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a ^12C target by the proton beams, The prompt γ-rays and diode bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector, The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.  相似文献   

5.
In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.  相似文献   

6.
The spectral emission and plasma parameters of SnO_2 plasmas have been investigated.A planar ceramic SnO_2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns.The temporal behavior of the specific emission lines from the SnO_2 plasma was characterized.The intensities of Sn I and Sn II lines first increased,and then decreased with the delay time.The results also showed a faster decay of Sn I atoms than that of Sn II ionic species.The temporal evolutions of the SnO_2 plasma parameters(electron temperature and density) were deduced.The measured temperature and density of SnO_2 plasma are 4.38 eV to0.5 eV and 11.38×10~(17) cm~(-3) to 1.1×10~(17) cm~(-3),for delay times between 0.1 μs and 2.2 μs.We also investigated the effect of the laser pulse energy on SnO_2 plasma.  相似文献   

7.
Ion bernstein wave (IBW) experiments have been carried out in HT-7 superconducting tokamak in recent years. The electron heating experiments concentrated on deuterium plasma with an injected RF power up to 350 kW. The global heating and the localized heating can be seen clearly by adjusting the ICRF resonance layer positions. The on-axis and the off-axis electron heating were realized by arranging the target plasma parameters properly. Experimental results show that the maximum increment of electron temperature was more than 1 keV, the electron temperature profile was modified by IBW under different plasma conditions and the improvements of both energy and particle confinements have been obtained.  相似文献   

8.
Three tungsten coatings with a thickness of 250 μm, 600μm and 220 μm, respectively, were deposited on a CuCrZr substrate by the vacuum plasma spraying technology. In order to study the thermal performance of the coatings, heat load limit, thermal fatigue lifetime and thermal response tests were performed by means of the electron beam irradiation with a heat flux from 0 MW/m^2 to 10 MW/m^2. Experimental results indicated that tungsten coatings on CuCrZr with a titanium or tungsten/copper interlayer could expel heat flux timely and had good thermal fatigue properties, titanium was a promising compliant layer which provided a reliable way to join tungsten onto the CuCrZr heat sink, even suffering from a heat flux of 10 MW/m^2 or withstanding 54 cycles of fatigue tests under 5 MW/m^2. However, the better quality of tungsten coating itself was necessary because its surface temperature was higher than that of the sample with a tungsten/copper interlayer.  相似文献   

9.
EAST (experimental advanced superconducting tokamak) is an advanced steadystate plasma physics experimental device, which is being constructed as the Chinese National Nuclear Fusion Research Project. During the plasma operation the vacuum vessel as one of the key component will withstand the electromagnetic force due to the plasma disruption, the Halo current and the toroidal field coil quench, the pressure of boride water and the thermal load due to 250℃ baking by pressurized nitrogen gas. In this paper a report of the static and dynamic mechanical analyses of the vacuum vessel is made. Firstly the applied loads on the vacuum vessel were given and the static stress distribution under the gravitational loads, the pressure loads, the electromagnetic loads and thermal loads were investigated. Then a series of primary dynamic, buckling and fatigue life analyses were performed to predict the structure's dynamic behavior. A seismic analysis was also conducted.  相似文献   

10.
A high-flux linear plasma device in Sichuan University plasma-surface interaction(SCU-PSI)based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors.In this paper,the helium plasma has been characterized by a double-pin Langmuir probe.The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T.The core density and ion flux of helium plasma have a strong dependence on the applied current,magnetic field strength and gas flow rate.It could reach an electron density of1.2?×?10~(19)m~(-3)and helium ion flux of 3.2?×?10~(22)m~(-2)s~(-1),with a gas flow rate of 4 standard liter per minute,magnetic field strength of 0.2 T and input power of 11 k W.With the addition of-80 Vapplied to the target to increase the helium ion energy and the exposure time of 2 h,the flat top temperature reached about 530°C.The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy.These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.  相似文献   

11.
B4C涂层作为等离子体面对材料的一些性质   总被引:1,自引:0,他引:1  
介绍了利用等离子喷涂设备,B4C/Cu梯度功能涂层及非梯度涂层的制备技术,在模拟实验装置中测量了在高能粒子(3 keV,D+)的作用下,B4C涂层的化学溅射产额、热解吸性能、热冲击性能及热导率.结果表明B4C是一种有希望为未来聚变装置中等离子体面对的材料.  相似文献   

12.
Tungsten was coated on a W/Cu functionally graded material (FGM) by chemical vapor deposition technique (CVD), and then the tungsten coated tile was brazed on the CuCrZr heat sink with a cooling channel. The thickness of CVD-W was 2 mm deposited by a fast rate of about 0.7 mm/h. The features of the CVD-W coating including morphology, element composition and thermal properties were characterized. A tungsten coating with high density, purity and thermal conductivity is achieved. The bonding strength between the CVD-W layer and FGM was measured using bonding tensile tests. Thermal screening and fatigue tests were performed on the CVD-W mock-ups under fusion relevant conditions using an electron beam device. Experimental results showed that the CVD-W mock-up failed by melting of Cu beneath the tungsten layer under a high heat load of 14.5 MW/m2 and 30 s pulse duration. Thermal fatigue tests showed that the CVD-W mock-up could sustain 1000 cycles at a heat load of 11.7 MW/m2 absorbed power density and 15 s pulse duration without visible failure.  相似文献   

13.
Thermal response of plasma sprayed tungsten coating to high heat flux   总被引:5,自引:0,他引:5  
In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 °C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 °C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load.  相似文献   

14.
掺杂石墨在高能激光束和电子束作用下的热冲击行为   总被引:2,自引:0,他引:2  
石墨被广泛用于当今的托卡马克装置中 ,作为真空室第一壁和偏滤器靶板的保护材料 ,也是未来聚变堆的一种候选面对等离子体材料。其抗化学溅射性能和抗热冲击性能受到广泛关注。用高能激光束和电子束轰击实验材料 ,模拟聚变堆面对等离子体材料在等离子体破裂时的工作状态 ,考察了 4种掺杂石墨材料在热冲击下的热腐蚀规律。实验结果表明 ,石墨掺杂能有效降低材料的烧蚀率。当激光单脉冲能量密度为 491 5KJ m2 时 ,冲击频率 1 0Hz,持续辐照 3 0秒后 ,几种掺杂石墨的失重率不超过2 1 3 6mg cm2 ,表现出了比纯石墨更优良的抗热冲击性能。  相似文献   

15.
In this paper,we investigate the time-resolved spectroscopy of collinear femtosecond(fs)and nanosecond(ns)dual-pulse(DP)laser-induced plasmas.A copper target was used as an experimental sample,and the fs laser was considered as the time zero reference point.The inter-pulse delay between fs and ns laser beams was 3 μs.First,we compared the time-resolved peak intensities of Cu(Ⅰ)lines from Cu plasmas induced by fs+ns and ns+fs DP lasers with collinear configuration.The results showed that compared with the ns+fs DP,the fs+ns DP laser-induced Cu plasmas had stronger peak intensities and longer lifetimes.Second,we calculated time-resolved plasma temperatures using the Boltzmann plot with three spectral lines at Cu(Ⅰ)510.55,515.32 and 521.82 nm.In addition,time-resolved electron densities were calculated based on Stark broadening with Cu(Ⅰ)line at 521.82 nm.It was found that compared with ns+fs DP,the plasma temperatures and electron densities of the Cu plasmas induced by fs+ns DP laser were higher.Finally,we observed images of ablation craters under the two experimental conditions and found that the fs+ns DP laser-produced stronger ablation,which corresponded to stronger plasma emission.  相似文献   

16.
Epitaxial, buried silicon carbide (SiC) layers have been fabricated in (100) and (111) silicon by ion beam synthesis (IBS). In order to study the ion beam induced epitaxial crystallization (IBIEC) of buried SiC layers, the resulting Si/SiC/Si layer systems were amorphized using 2 MeV Si2+ ion irradiation at 300 K. An unexpected high critical dose for the amorphization of the buried layers is observed. Buried, amorphous SiC layers were irradiated with 800 keV Si+ ions at 320 and 600°C, respectively, in order to achieve ion beam induced epitaxial crystallisation. It is demonstrated that IBIEC works well on buried layers and results in epitaxial recrystallization at considerably lower target temperatures than necessary for thermal annealing. The IBIEC process starts from both SiC/Si interfaces and may be accompanied by heterogenous nucleation of poly-SiC as well as interfacial layer-by-layer amorphization, depending on irradiation conditions. The structure of the recrystallized regions in dependence of dose, dose rate, temperature and crystal orientation is presented by means of TEM investigations.  相似文献   

17.
High power CO2 laser beam was used to simulate high heat flux on a plasma disruption. Fatigue strength and fracture toughness were examined in order to estimate the extent of degradation due to the melted layer, which was the region melted and resolidified in the course of transient high heat flux. The materials were austenitic stainless steels SUS316 and SUS304. Fatigue strength of the irradiated specimen was notably reduced because of the macrodefects on and just below the top surface of the melted layer. However, fracture toughness of the irradiated specimen was not reduced at all. It is considered that melting and resolidification in SUS316 and SUS304 due to high power CO2 laser beam did not necessarily bring about the degradation of their material strength in the internal part of the melted layer.  相似文献   

18.
Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m~2 and cyclic tests of 9 MW/m~2 for 1000 cycles without visible damage.  相似文献   

19.
High performance ceramics, e.g., silicon carbide (SiC), can widely be used in the nuclear sector because of their excellent thermo chemical and radiological properties. However, it has not been possible to utilise this great potential since the technologies for high temperature resistant joining of these ceramic materials are not yet satisfying.This paper describes an innovative laser joining technology that allows the firm vacuum gas tight binding between any shaped bodies made of these ceramic materials. The joints obtained are temperature resistant at 1600 °C and above. The method is based on a solder that is specially made from Al2O3, Y2O3 and SiO2 and melted locally in the joining zone by use of laser radiation. The paper discusses the influence of the laser beam wave length, the seam geometry and the solder composition on the quality of the braze joint. The advantages of this new method are illustrated by means of laser brazed SiC capsules and other parts and compared with conventional joining methods.  相似文献   

20.
应用B2-code模拟了偏滤器等离子体行为,优化了HL-2A装置偏滤器位形。研究了偏滤器刮削层中等离子体与器壁间过渡鞘层的离子碰撞效应,模拟研究了利用LHCD和NBI控制等离子体剖面分布在HL-2A中建立准稳态的反磁剪切位形。HL-2A装置首次实现了下单零点的偏滤器位形运行,完成了偏滤器初步物理实验,截至2004年底,获得等离子体电流320 kA,等离子体存在时间1 580 ms,环向磁场2.2 T。开展了高功率密度聚变堆偏滤器靶板的设计研究,特别是流动液态锂偏滤器靶板表面的物理过程的研究。探索性研究了用RF有质动力势改善偏滤器排灰效率和减少氚投料量。对FEB- E聚变堆偏滤器进行了优化设计。用电子束模拟对碳基材料及钨进行了高热负荷冲击实验,完成了钨/铜合金的热等静压焊接及热疲劳试验研究。研究了氦在钨中的滞留与热解吸行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号