首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 781 毫秒
1.
密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离[dc]无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离[dc],然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。  相似文献   

2.
针对密度峰值聚类算法(The density peak clustering algorithm,DPC)聚类结果受距离阈值dc参数影响较大的问题,提出一种局部密度捕获范围以及利用局部密度信息熵均值进行加权优化的方法(简称为LDDPC),在DPC算法选取到错误的距离阈值dc时,通过对最大密度邻近点的相对距离进行加权,重新获得正确的分类数量和聚类中心。经典数据集的实验结果表明,基于局部密度信息熵均值加权优化能避免 DPC 算法中距离阈值dc对聚类结果的影响,提高分类的正确率。  相似文献   

3.
密度峰值聚类(DPC)算法在对密度分布差异较大的数据进行聚类时效果不佳,聚类结果受局部密度及其相对距离影响,且需要手动选取聚类中心,从而降低了算法的准确性与稳定性。为此,提出一种基于加权共享近邻与累加序列的密度峰值算法DPC-WSNN。基于加权共享近邻重新定义局部密度的计算方式,以避免截断距离选取不当对聚类效果的影响,同时有效处理不同类簇数据集分布不均的问题。在原有DPC算法决策值的基础上,生成一组累加序列,将累加序列的均值作为聚类中心和非聚类中心的临界点从而实现聚类中心的自动选取。利用人工合成数据集与UCI上的真实数据集测试与评估DPC-WSNN算法,并将其与FKNN-DPC、DPC、DBSCAN等算法进行比较,结果表明,DPC-WSNN算法具有更好的聚类表现,聚类准确率较高,鲁棒性较强。  相似文献   

4.
快速搜索与发现密度峰值聚类算法(Fast Search and Discovery Density Peak Clustering Algorithm,CFSFDP)的聚类效果十分依赖截断距离[dc]的主观选取,而最佳[dc]值的确定并不容易,并且当处理分布复杂、密度变化大的数据集时,算法生成的决策图中类簇中心点与非类簇中心点的区分不够明显,使类簇中心的选取变得困难。针对这些问题,对其算法进行了优化,并提出了基于K近邻的比较密度峰值聚类算法(Comparative Density Peak Clustering algorithm Based on K-Nearest Neighbors,CDPC-KNN)。算法结合K近邻概念重新定义了截断距离和局部密度的度量方法,对任意数据集能自适应地生成截断距离,并使局部密度的计算结果更符合数据的真实分布。同时在决策图中引入距离比较量代替原距离参数,使类簇中心在决策图上更加明显。通过实验验证,CDPC-KNN算法的聚类效果整体上优于CFSFDP算法与DBSCAN算法,分离度实验表明新算法使类簇中心与非类簇中心点的区分度得到有效提高。  相似文献   

5.
密度峰值聚类算法(DPC)能够有效地进行非球形数据的聚类,该算法需要输入截断距离,人工截取聚类中心,导致DPC算法的聚类效果有时较差。针对这些问题,提出一种结合密度比和系统演化的密度峰值聚类算法(DS-DPC)。利用自然最近邻搜索得出各样本点的邻居数目,根据密度比思想改进密度计算公式,使其能够反映周围样本的分布情况;对局部密度与相对距离的乘积进行降序排列,根据排序值选出聚类中心,将剩余样本按照DPC算法的分配策略进行聚类,避免了手动选择聚类中心的主观性;利用系统演化方法判断聚类结果是否需要合并或分离。通过在多个数据集上进行实验,并与其他聚类算法进行比较,实验结果表明,该算法具有较好的聚类效果。  相似文献   

6.
针对密度峰值聚类算法DPC(clustering by fast search and find of density peaks)时间复杂度高、准确度低的缺陷,提出了一种基于Ball-Tree优化的快速密度峰值聚类算法BT-DPC。算法利用第[k]近邻度量样本局部密度,通过构建Ball-Tree加速密度[ρ]及距离[δ]的计算;在类簇分配阶段,结合[k]近邻思想设计统计学习分配策略,将边界点正确归类。通过在UCI数据集上的实验,将该算法与原密度峰值聚类算法及其改进算法进行了对比,实验结果表明,BT-DPC算法在降低时间复杂度的同时提高了聚类的准确度。  相似文献   

7.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。  相似文献   

8.
针对密度峰值聚类算法(DPC)不能自动确定聚类中心,并且聚类中心点与非聚类中心点在决策图上的显示不够明显的问题,设计了一种自动确定聚类中心的比较密度峰值聚类算法(ACPC)。该算法首先利用距离的比较量来代替原距离参数,使潜在的聚类中心在决策图中更加突出;然后通过二维区间估计方法进行对聚类中心的自动选取,从而实现聚类过程的自动化。仿真实验结果表明,在4个合成数据集上ACPC取得了更好的聚类效果;而在真实数据集上的Accuracy指标对比表明,在Iris数据集上,ACPC聚类结果可达到94%,与传统的DPC算法相比提高了27.3%,ACPC解决了交互式选取聚类中心的问题。  相似文献   

9.
董晓君  程春玲 《计算机科学》2018,45(11):244-248
快速搜索和发现密度峰值的聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP)是一种新的基于密度的聚类算法,它通过发现密度峰值来有效地识别类簇中心,具有聚类速度快、实现简单等优点。针对CFSFDP算法的准确性依赖于数据集的密度估计和截断距离(dc)的人为选择问题,提出一种基于核密度估计的K-CFSFDP算法。该算法利用无参的核密度估计分析数据点的分布特征并自适应地选取dc,从而搜索和发现数据点的密度峰值,并以峰值点数据作为初始聚类中心。基于4个典型数据集的仿真结果表明,K-CFSFDP算法比CFSFDP,K-means和DBSCAN算法具有更高的准确度和更强的鲁棒性。  相似文献   

10.
杜洁  马燕  黄慧 《计算机应用》2022,42(5):1472-1479
密度峰值聚类(DPC)算法对于密度多样、形状复杂的数据集不能准确选择聚类中心,同时基于局部引力的聚类(LGC)算法参数较多且需要手动调参。针对这些问题,提出了一种基于局部引力和距离的聚类算法(LGDC)。首先,利用局部引力模型计算数据点的集中度(CE),根据集中度确定每个数据点与高集中度的点之间的距离;然后,选取具有高集中度值和高距离值的数据点作为聚类中心;最后,基于簇的内部点集中度远高于边界点的集中度的思想,分配其余数据点,并且利用平衡k近邻实现参数的自动调整。实验结果表明,LGDC在4个合成数据集上取得了更好的聚类效果;且在Wine、SCADI、Soybean等真实数据集上,LGDC的调整兰德系数(ARI)指标相较DPC、LGC等算法平均提高了0.144 7。  相似文献   

11.
章曼  张正军  冯俊淇  严涛 《计算机应用》2022,42(6):1914-1921
针对基于快速搜索和发现密度峰值的聚类(CFSFDP)算法中截断距离需要人工选取,以及最近邻分配带来的误差导致的在具有不同密度簇的复杂数据集上的聚类效果不佳的问题,提出了一种基于自适应可达距离的密度峰值聚类(ARD-DPC)算法。该算法利用非参数核密度估计方法计算点的局部密度,根据决策图选取聚类中心,并利用自适应可达距离分配数据点,从而得到最终的聚类结果。在4个合成数据集和6个UCI数据集上进行了仿真实验,将所提算法ARD-DPC与基于快速搜索和发现密度峰值的聚类(CFSFDP)、基于密度的噪声应用空间聚类(DBSCAN)、基于密度自适应距离的密度峰聚类(DADPC)算法进行了比较,实验结果表明,相比其他三种算法,ARD-DPC算法在7个数据集上的标准化互信息(NMI)、兰德指数(RI)和F1-measure取得了最大值,在2个数据集分别取得F1-measure和NMI的最大值,只对模糊度较高、聚类特征不明显的Pima数据集聚类效果不佳;同时,ARD-DPC算法在合成数据集上能准确地识别出聚类数目和具有复杂密度的簇。  相似文献   

12.
吴斌  卢红丽  江惠君 《计算机应用》2020,40(6):1654-1661
密度峰值聚类(DPC)算法是一种新型的聚类算法,具有调节参数少、无需迭代求解、能够发现非球形簇等优点;但也存在截断距离无法自动调节、聚类中心需要人工指定等缺点。针对上述问题,提出了一种自适应DPC(ADPC)算法,实现了基于基尼系数的自适应截断距离调节,并建立了一种聚类中心的自动获取策略。首先,综合考虑局部密度和相对距离两种因素以重新定义簇中心权值计算公式;然后,基于基尼系数建立自适应截断距离调节方法;最后,根据决策图和簇中心权值排序图提出自动选取聚类中心的策略。仿真实验结果表明,ADPC算法可以根据问题特征来自动调节截断距离并自动获取聚类中心点,而且在测试数据集上取得了比几种常用的聚类算法和DPC改进算法更好的结果。  相似文献   

13.
邱保志  程栾 《计算机应用》2018,38(9):2511-2514
针对聚类算法的聚类中心选取需要人工参与的问题,提出了一种基于拉普拉斯中心性和密度峰值的无参数聚类算法(ALPC)。首先,使用拉普拉斯中心性度量对象的中心性;然后,使用正态分布概率统计方法确定聚类中心对象;最后,依据对象到各个中心的距离将各个对象分配到相应聚类中心实现聚类。所提算法克服了算法需要凭借经验参数和人工选取聚类中心的缺点。在人工数据集和真实数据集上的实验结果表明,与经典的具有噪声的基于密度的聚类方法(DBSCAN)、密度峰值聚类(DPC)算法以及拉普拉斯中心峰聚类(LPC)算法相比,ALPC具有自动确定聚类中心、无参数的特点,且具有较高的聚类精度。  相似文献   

14.
针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA)。该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概念并结合K近邻思想设计了全局搜索分配策略,通过不断将核心点的未分配K近邻正确归类以加快聚类速度,进而提出一种基于K近邻加权的统计学习分配策略,利用剩余点的K近邻加权信息来确定其被分配到各局部类的概率,有效提高了聚类质量。实验结果表明,IDPCA算法在21个典型的测试数据集上均有良好的适用性,而在与DPC算法及另外3种典型聚类算法的性能指标对比上,其优势更为明显。  相似文献   

15.
周欢欢  郑伯川  张征  张琦 《计算机应用》2022,42(5):1464-1471
针对基于共享最近邻的密度峰聚类算法中的近邻参数需要人为设定的问题,提出了一种基于自适应近邻参数的密度峰聚类算法。首先,利用所提出的近邻参数搜索算法自动获得近邻参数;然后,通过决策图选取聚类中心;最后,根据所提出的代表点分配策略,先分配代表点,后分配非代表点,从而实现所有样本点的聚类。将所提出的算法与基于共享最近邻的快速密度峰搜索聚类(SNN?DPC)、基于密度峰值的聚类(DPC)、近邻传播聚类(AP)、对点排序来确定聚类结构(OPTICS)、基于密度的噪声应用空间聚类(DBSCAN)和K-means这6种算法在合成数据集以及UCI数据集上进行聚类结果对比。实验结果表明,所提出的算法在调整互信息(AMI)、调整兰德系数(ARI)和FM指数(FMI)等评价指标上整体优于其他6种算法。所提算法能自动获得有效的近邻参数,且能较好地分配簇边缘区域的样本点。  相似文献   

16.
CFSFDP算法(Clustering by Fast Search and Find of Density Peaks)具有简单高效且需要较少参数的优点,但存在需要人为确定截断距离参数和聚类中心的不足。为克服以上不足,提出了自适应快速搜索密度峰值聚类算法。该算法针对截断距离参数的确定问题,构造关于截断距离参数的局部密度信息熵,通过最小化信息熵自适应地确定截断距离参数;针对聚类中心的确定问题,利用从非聚类中心到聚类中心数据点局部密度和距离的乘积,存在明显跳跃这一特征确定阈值,从而能自动确定聚类中心。实验结果表明该算法能够取得较好的聚类性能,且无需人为确定截断距离参数和聚类中心。  相似文献   

17.
密度峰值聚类(DPC)方法能够快速地对数据进行聚类,而不管它们的形状和包含它们的空间的维数,近年来得到广泛研究和应用。然而,当各个聚类中心的密度的差异较大,或者同一个类中包含多个密度中心时,DPC计算效果受到影响。针对于此,提出了基于密度二分法的密度峰值聚类方法。首先,求出全部数据平均密度,将数据分为高密度点和低密度点,然后,根据高密度的点的决策图识别出聚类中心后,根据是否存在可达距离的数据点对同类的聚类中心实现合并。最后,根据提出的分配策略,使高密度点和低密度点都分配到合适的聚类中心,从而实现聚类。在多个合成及实际数据集上的实验表明,该方法的聚类效果明显优于已有的DPC方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号