首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
预应力RPC吊车梁正截面静载承载力试验研究   总被引:1,自引:0,他引:1  
活性粉末混凝土(Reactive Powder Concrete,简称RPC)是一种新型超高性能混凝土.为了研究其构件的受弯性能,制作了二根吊车梁进行静载试验,通过分析其受力至破坏的整个过程,得到了吊车梁在各级荷载作用下最不利截面应变沿高度的分布图,建立了考虑受拉区拉应力贡献的正截面开裂弯矩和极限弯矩计算公式.研究结果表明,预应力活性粉末混凝土受弯构件,在开裂前可以按弹性方法计算,将受压区简化为三角形,受拉区简化为梯形.在计算截面抵抗矩塑性影响系数时,纵筋率越高,梁的开裂弯矩提高越大,其T形截面的抵抗矩塑性影响系数γm可近似取为2.1.考虑受拉区混凝土的贡献,受拉区应力图等效系数k可近似取为0.34.  相似文献   

2.
钢筋活性粉末混凝土简支梁正截面受力性能试验研究   总被引:4,自引:0,他引:4  
通过轴压和轴拉试验,得到了活性粉末混凝土受压和受拉应力-应变全曲线方程。通过6根钢筋活性粉末混凝土梁受弯性能试验,得到了此类梁在各级荷载作用下纯弯区段受压边缘压应变及应变沿梁高的分布,获得了试验梁的开裂弯矩和极限弯矩,考察了试验梁的变形及裂缝分布与开展。试验结果表明:钢筋活性粉末混凝土试验梁受压边缘极限压应变为5500×10-6,纯弯区段开裂应变为750×10-6,截面抵抗矩塑性影响系数计算应考虑纵向受拉钢筋的有利影响。建立了考虑截面受拉区拉应力贡献的正截面承载力计算公式和反映钢筋活性粉末混凝土梁自身受力特点的刚度及裂缝宽度计算方法,可供钢筋活性粉末混凝土梁设计时参考。图9表10参11  相似文献   

3.
为了研究后张法预应力超高性能钢纤维混凝土梁的受弯性能,对6根梁试件进行了3分点对称加载试验研究。试件变化参数包括非预应力纵筋强度等级、配筋率、张拉控制应力及预应力度,获得了试件的开裂弯矩、极限弯矩、破坏形态以及裂缝开展情况。试验结果表明:HRB500级钢筋与UHPSFC适配良好,可以充分发挥二者的高强性能;张拉控制应力及预应力度增加,开裂弯矩增大;高性能钢纤维混凝土梁弯曲裂缝细而密,正常使用极限状态下最大裂缝宽度不大于0.15mm。通过引入抗裂影响系数对受拉区塑性影响系数进行修正后,开裂弯矩计算值与试验值吻合较好。根据简化的高性能钢纤维混凝土本构模型建立了高性能钢纤维混凝土梁的受弯承载力计算公式,其计算值与试验值吻合良好,可为高性能钢纤维混凝土梁理论分析和设计提供参考。  相似文献   

4.
GFRP筋活性粉末混凝土梁受力性能试验研究   总被引:3,自引:0,他引:3  
为了研究GFRP筋活性粉末混凝土梁的受力性能,对8根梁进行三分点加载试验,获得了试验梁的开裂弯矩、极限弯矩以及各级荷载作用下的变形及裂缝分布与开展。试验结果表明:活性粉末混凝土试验梁纯弯区段开裂应变 (750×10-6) 约为普通混凝土梁的7倍,开裂弯矩及截面塑性系数计算应考虑纵向受拉GFRP筋的有利影响。GFRP筋活性粉末混凝土梁正截面受弯破坏形式可分为纵向受拉GFRP筋被拉断而受压边缘活性粉末混凝土未被压碎的受拉破坏,受压边缘活性粉末混凝土被压碎(5500×10-6)而纵向受拉GFRP筋未被拉断的受压破坏,以及纵向受拉GFRP筋被拉断的同时受压边缘活性粉末混凝土被压碎的界限破坏等三种。对于受压破坏可按拉区应力为0.25倍活性粉末混凝土抗拉强度来考虑拉应力对正截面受弯承载力的贡献。对于受拉破坏则基于材料应力-应变关系通过数值积分迭代计算正截面受弯承载力。刚度及裂缝宽度计算的关键是合理计算使用阶段GFRP筋的拉应力,在计算GFRP筋拉应力时所用弯矩应为外荷载弯矩减去拉区活性粉末混凝土拉应力合力对压区合力点的弯矩。图9表12参10  相似文献   

5.
针对混凝土翼板内配置后张有粘结预应力筋的钢纤维混凝土-钢组合梁,提出界面滑移条件下的预应力传递规律和混凝土法向应力计算方法。基于负弯矩作用下7个试件的静力及疲劳试验,建立考虑钢纤维影响和混凝土收缩应力的组合梁混凝土翼板开裂弯矩计算公式。指出影响组合梁混凝土裂缝宽度的因素包括预应力度、配纤率、力比、连接度、配筋率及栓钉间距等;给出考虑上述影响因素的计算最大裂缝宽度经验公式。疲劳试验中,测试构件自振频率随荷载循环的变化规律,运用损伤力学理论建立结构自振频率与损伤度的量化关系。研究结果表明:预应力钢纤维混凝土-钢组合梁带裂缝工作时具有良好的疲劳稳定性,180万次的循环加载损伤度增大约20%。  相似文献   

6.
赵军  高丹盈 《混凝土》2005,(5):91-94
根据钢筋钢纤维部分增强混凝土梁正截面受弯性能的试验研究成果,分析了钢纤维对平均裂缝间距、钢筋应变不均匀系数和钢筋应力的影响,提出了与普通钢筋混凝土梁裂缝宽度计算方法相衔接的钢纤维增强钢筋混凝土梁裂缝宽度的统一计算方法。结果表明,在梁截面部分地加入钢纤维能够达到全截面加入对裂缝的限制效果,提出的裂缝宽度计算公式计算简便,可用于实际工程设计。  相似文献   

7.
通过26根无粘结部分预应力高强混凝土梁,研究了影响裂缝宽度及裂缝闭合和变形的主要因素,将无粘结部分预应力高强混凝土梁在使用荷载作用下的受力状态转化为偏心受压构件的受力状态,求解非预应力筋的应力,然后采用现有规范裂缝宽度计算公式来求无粘结部分预应力高强混凝土梁的裂缝宽度,并建立了重复荷载作用下的无粘结部分预应力高强混凝土梁裂缝宽度计算公式;应用名义拉应力建立了闭合弯矩计算公式.将预应力筋和非预应力筋对无粘结梁跨中最大挠度的影响,用无粘结配筋指标和综合配筋指标之比η和换算配筋率αpρ这两个参数来反映,并且采用与国内有关规范相一致的直接双直线法,建立了任意荷载作用下的无粘结部分预应力高强混凝土梁变形计算公式.计算结果与试验结果吻合较好.  相似文献   

8.
新型预应力碳纤维布加固梁裂缝与刚度分析计算   总被引:2,自引:0,他引:2  
在介绍新型拉锚一体化预应力碳纤维布张拉与拉锚设备及技术特点的基础上,根据新型预应力碳纤维布加固混凝土梁正常使用阶段的截面受力情况分析,提出了该种梁裂缝的分布及其平均间距和裂缝宽度的主要因素以及影响该梁短期刚度的主要因素。在参照分析无粘结部分预应力混凝土梁的裂缝宽度公式、短期刚度公式的基础上,提出了与规范相对应的一套拉锚一体化预应力碳纤维加固混凝土梁的裂缝宽度的计算公式及短期刚度计算公式。与试验结果对比表明,建议计算方法及公式准确度较高。  相似文献   

9.
莫艾艾  陈世鸣 《建筑技术》2005,36(4):273-276
目前,无粘结预应力混凝土结构的裂缝控制和裂缝宽度计算尚无统一标准可循,现行有关规范、规程没有裂缝宽度计算公式,实际工程设计常参照有粘结预应力混凝土的相关规定。现行规范对正常极限状态下预应力混凝土构件裂缝实行分级控制,适当放松了抗裂控制条件,提高了拉应力限制系数的取值,仍采用平均裂缝宽度乘以扩大系数的方法计算最大裂缝宽度。用现行规范计算裂缝宽度,有助于减少无粘结预应力混凝土结构的用钢量。建议在无粘结预应力工程中对裂缝控制条件进一步放松,在荷载短期效应组合下按允许开裂进行设计,合理选择配筋率。  相似文献   

10.
为研究600MPa级超高强钢筋混凝土梁受弯性能,进行18根配置600MPa级高强钢筋和1根配置HRB400钢筋的混凝土梁受弯静载试验,分析600MPa级超高强钢筋对混凝土梁裂缝分布、承载力、平均裂缝间距、最大裂缝宽度等影响。研究结果表明:配置该类型钢筋的受弯构件开裂弯矩和极限弯矩仍然可以按照现行规范公式进行计算;短期荷载作用下平均裂缝间距、最大裂缝宽度等参数计算值与现行混凝土结构设计规范公式计算值存在一定差异,平均裂缝间距计算值偏大,最大裂缝宽度计算值与试验值相比偏小。最后根据试验数据对配置该类型钢筋的受弯构件裂缝宽度计算公式进行适当修正,第一种方法是在现行规范计算公式基础上引进裂缝宽度综合调整系数,第二种方法是对现行规范裂缝宽度计算公式中的平均裂缝间距采用修正公式代替,短期裂缝宽度扩大系数采用修正值。修正结果表明第一种修正方法得到的计算值与试验值吻合度高,同时考虑到规范的连续性,建议采用第一种方法进行裂缝宽度修正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号