首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

2.
Core/shell nanostructured carbon materials with carbon nanofiber (CNF) as the core and a nitrogen (N)-doped graphitic layer as the shell were synthesized by pyrolysis of CNF/polyaniline (CNF/PANI) composites prepared by in situ polymerization of aniline on CNFs. High-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared and Raman analyses indicated that the PANI shell was carbonized at 900°C. Platinum (Pt) nanoparticles were reduced by formic acid with catalyst supports. Compared to the untreated CNF/PANI composites, the carbonized composites were proven to be better supporting materials for the Pt nanocatalysts and showed superior performance as catalyst supports for methanol electrochemical oxidation. The current density of methanol oxidation on the catalyst with the core/shell nanostructured carbon materials is approximately seven times of that on the catalyst with CNF/PANI support. TEM tomography revealed that some Pt nanoparticles were embedded in the PANI shells of the CNF/PANI composites, which might decrease the electrocatalyst activity. TEM-energy dispersive spectroscopy mapping confirmed that the Pt nanoparticles in the inner tube of N-doped hollow CNFs could be accessed by the Nafion ionomer electrolyte, contributing to the catalytic oxidation of methanol.  相似文献   

3.
K. Kakaei 《Fuel Cells》2012,12(6):939-945
We report a Pt/Vulcan carbon–polyaniline (VC–PANI) catalyst for the oxygen reduction reaction (ORR). This electrocatalyst was prepared from Pt nanoparticles supported by a VC–PANI composite substrate. Electrochemical performance was measured using potentiostat/galvanostats technique and a proton exchange membrane fuel cell (PEMFC) test station. The electrochemical properties of the electrodes were characterized using linear sweep voltammetry, AC impedance spectroscopy and chronoamperometry. Electrochemical characterization by hydrogen adsorption/desorption cyclic voltammetry and CO stripping voltammetry indicates that the electrochemical active surface areas of the Pt/VC–PANI are comparable to the commercial catalyst. The performance of the Pt/VC–PANI and Pt/C(E‐TEK) + PANI electrocatalysts were found to be 1.82 and 1.33 times higher than of the Pt/C(E‐TEK) electrode. The surface morphologies of the electrodes were characterized by using scanning electron microscopy (SEM). PANI has a fibrous structure and the improved performance was attributed to the PANI effect and synergistic effects between the carbon Vulcan and the PANI fiber. These results indicate that Pt/VC–PANI is a promising catalyst for the ORR in PEMFCs using an H2/O2 feed.  相似文献   

4.
Incorporation of carbon nanotubes (CNTs) in conducting polymer can lead to new composites with enhanced electrical and mechanical properties. However, the development of such composites has been hampered by the inability to disperse CNTs in polymer matrix due to the lack of chemical compatibility between polymers and CNTs. Covalent sidewall functionalization of carbon nanotube provides a feasible route to incorporate carbon nanotube in polymer. In this work, 4‐aminobenzene groups were grafted onto the surface of multi‐walled carbon nanotube (MWNT) via C? C covalent bond. Polyaniline (PANI)/MWNT composites were fabricated by electrochemical polymerization of aniline containing well‐dissolved functionalized MWNTs. The obtained composites can be used as catalyst supports for electrooxidation of formic acid. Cyclic voltammogram results show that platinum particles deposited in PANI/MWNT composite films exhibit higher electrocatalytic activity and better long‐term stability towards formic acid oxidation than that deposited in pure PANI films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
We successfully synthesized 13X zeolite using a hydrothermal method. Then, composites of polyaniline (PANI) with 13X zeolite and PANI–13X with platinum were prepared by chemical oxidative polymerization and chemical reduction, respectively. Field emission scanning electron microscopy, X‐ray diffraction, Raman spectroscopy and Brunauer–Emmett–Teller techniques were used to characterize the PANI–Pt and PANI–Pt–13X composites. Further, the electrocatalytic activity towards methanol oxidation of the synthesized catalysts was explored using cyclic voltammetry in 1 mol L?1 CH3OH + 0.5 mol L?1 H2SO4 solution. From the obtained results, PANI–Pt–13X shows superior performance compared to PANI–Pt towards methanol oxidation and electrical conductivity. Hence, the 13X zeolite‐incorporated PANI–Pt composite could be an efficient catalyst for direct methanol fuel cell applications. © 2019 Society of Chemical Industry  相似文献   

6.
Polyaniline (PANI) with nanowire (PANI‐(NW)) network structure (mean diameter 10–20 nm) was successfully deposited on a stainless steel (SS) electrode by a galvanostatic process. Platinum particles were deposited into the PANI nanowire network structure to result the PANI(NW)‐Pt composite electrode. The PANI(NW)‐Pt electrode was used as electrocatalysts for the electrochemical oxidation of methanol. The PANI nanowires and PANI(NW)‐Pt nanocomposite were characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS), and UV–vis absorption spectroscopy. Nanowire morphology with an average diameter of 10–20 nm could be seen from scanning electron micrograph. Small amount (70 mμm) of spherical Pt particles could be deposited into the PANI(NW). Catalytic activity for the oxidation of methanol was studied by using cyclic voltammetry (CV). For comparative purposes, bulk Pt (deposited Pt on SS) and PANI nanowires based electrodes were tested. The PANI(NW)‐Pt nanocomposite electrode exhibited excellent catalytic activity for the electrooxidation of methanol in comparison to bulk Pt electrodes, which reveals that the PANI(NW)‐Pt nanocomposite electrodeis more promising for application in electrocatalyst as a support material. POLYM. COMPOS., 28:650–656, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
In this work, we designed various polyaniline (PANI) nanocomposites with platinum (Pt) nanoparticle-decorated multi-walled carbon nanotubes (MWCNTs), employed them as anodic catalysts, and studied their structural assembly effects with regard to enhancing biohydrogen fuel cell performance. Of two proposed structures, the PANI/Pt/MWCNTs multilayer nanocomposites showed superior electrocatalytic activities in the hydrogen oxidation reaction and in fuel cell power density relative to the Pt/MWCNTs@PANI core–shell design. These enhancements were attributed to the active interface formed between the Pt nanoparticles and polyaniline nanofibers, where the higher electronic and ionic conductivities of the thin PANI nanofiber layers in contact with Pt active sites were better than with the PANI bound Pt/MWCNTs. We also investigated the change in the electronic state of the composites and the charge-transfer rate caused by varying the structural assembly. Finally, the role of each catalyst component was examined to understand its individual effect on fuel cell performance and to understand its structural assembly effect on enhanced power density.  相似文献   

8.
Polyaniline/nano‐TiO2 composites with the content of nano‐TiO2 varying from 6.2 wt % to 24.1 wt % were prepared by using solid‐state synthesis method at room temperature. The structure and morphology of the composites were characterized by the Fourier transform infrared (FTIR) spectra, ultraviolet‐visible (UV–vis) absorption spectra, X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The electrochemical performances of the composites were investigated by galvanostatic charge–discharge measurement, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results from FTIR and UV–vis spectra showed that the composites displayed higher oxidation and doping degree than pure PANI. The XRD and morphological studies revealed that the inclusion of nano‐TiO2 particles hampered the crystallization of PANI chains in composites, and the composites exhibited mixed particles from free PANI particles and the nano‐TiO2 entrapped PANI particles. The galvanostatic charge–discharge measurements indicated that the PANI/nano‐TiO2 composites had higher specific capacitances than PANI. The composite with 6.2 wt % TiO2 had the highest specific capacitance among the composites. The further electrochemical tests on the composite electrode with 6.2 wt % TiO2 showed that the composite displayed an ideal capacitive behavior and good rate ability. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
In this article, the volume conductivity of polypropylene (PP)/polyaniline (PANI)/multiwalled carbon nanotube (MWNT) composites was detected. When the ratio of PANI protonated with dodecylbenzene sulphonic acid (PANI‐DBSA) to MWNT is 2 to 3 and 3 to 17, the volume conductivity of the two composites is much higher than that of composites filled with solely PANI‐DBSA or MWNT. The synergistic effects of PANI‐DBSA and MWNT on the microstructure and the electric property of PP/PANI/MWNT composites were carefully analyzed by scanning electron microscope (SEM) and transmission electron microscopy. The SEM results illuminate that the dispersion and the continuity of the composites filled with PANI‐DBSA and MWNT are far better than that filled with only PANI‐DBSA or MWNT. Especially, the dispersion and continuity of PP/PANI/MWNT 5, in which the ratio of PANI‐DBSA to MWNT is 3 to 17, are the best among all the composites. When PANI‐DBSA is introduced in PP/PANI/MWNT composites, the size of agglomerated particles decreases, and the dispersion of conductive particles is improved evidently. Therefore, there is a synergistic action of PANI‐DBSA and MWNT, which is used to improve the dispersion of conductive particles and the volume conductivity of the PP/PANI/MWNT composites. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Gang Wu 《Carbon》2005,43(12):2579-2587
Vulcan XC-72 carbon black particles (average size: ca. 50 nm) was incorporated into polyaniline (PANI) matrix by an electrochemical codeposition technique during the electropolymerization process. The doping by carbon particles leads to a higher polymeric degree and a lower defect density in the PANI structure. Furthermore, the incorporation of carbon particles not only increases the electrochemical accessible surface areas (Sa) and electron conductivity of the PANI film, but also decreases charge transfer resistance at PANI/electrolyte interfaces. Therefore, as expected, a fabricated PANI + C composite film with dispersed Pt and PtRu particles exhibited excellent electrocatalytic activity for methanol oxidation due to better Pt dispersion and utilization. The PANI + C composite film is more promising as a support material in electrocatalysis than a PANI film. Meanwhile, a new application for regular carbon black as a doping material into conducting polymer for electrocatalysis was thus demonstrated.  相似文献   

11.
A novel composite electrode is fabricated through the electrodeposition of hydrous ruthenium oxide (RuO2·xH2O) and platinum (Pt) particles into the matrix of polyaniline (PANI). Scanning electron microscopy reveals that RuO2·xH2O and Pt particles are homogeneously distributed into the matrix of PANI. A comparison of the sizes of Pt and RuO2·xH2O particles incorporated into the PANI film reveals that Pt particles are smaller in sizes as compared with the sizes of RuO2·xH2O particles. The catalytic activity of composite electrodes was evaluated for the oxidation of methanol by using cyclic voltammetry and chronoamperometry. A relatively high catalytic current was noticed for the oxidation of methanol (2.37 mA/cm2) at PANI‐Pt‐RuO2·xH2O electrode (+0.6 V (V vs. Ag/AgCl) in comparison to oxidation current at PAN‐Pt (1.27 mA/cm2) electrode. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

12.
Fabing Su 《Carbon》2005,43(11):2366-2373
Ordered microporous carbon with a structure of amorphous carbon core and graphitic carbon shell was prepared using hydrogen-form zeolite Y as the template. Impregnation and chemical vapor deposition methods were employed to infiltrate carbon in the pores of the template. Physical adsorption of nitrogen, X-ray diffraction, thermogravimetric analysis, field-emission scanning electron microscope, and field-emission transmission electron microscope techniques were employed to study the structural and morphological properties of the samples. The electrochemical properties of Pt supported on the carbon samples were examined and compared with a commercial catalyst. It was observed that Pt catalyst supported on a carbon with a core/shell structure has a higher specific activity for room-temperature methanol oxidation than the commercial catalyst.  相似文献   

13.
The synthesis of polyaniline/platinum composites (PANI/Pt) has been achieved using both chemical and electrochemical methods. The direct chemical synthesis of PANI/Pt proceeds through the oxidation of aniline by PtCl62− in the absence of a secondary oxidant. SEM images of these samples indicate that the Pt particles are on the order of ∼1 μm for the chemically prepared composite. Electrochemical PANI/Pt synthesis is initiated by the uptake and reduction of PtCl62− into an a priori electrochemically deposited PANI film. This method produces a uniform dispersion of Pt particles with smaller particles with diameters ranging between 200 nm and 1 μm. The results indicate that electrochemical methods may be more suitable for controlling particle dimension. Both materials show reduced proton doping relative to PANI without Pt, indicating the metal particles directly influence proton doping and the oxidation state of the polymer. The electrochemical data indicate that the conductivity in solution is sufficient such that the normal acid doping is attainable for PANI/Pt produced using either synthetic method.  相似文献   

14.
Polyaniline/nano‐titanium dioxide composites (PANI/n‐TiO2) were prepared using α‐dextrose as surfactant and ammonium per sulfate as oxidant. The PANI/n‐TiO2 composite is characterized by Fourier transform infrared spectra and confirmed the presence of benzenoid and qunoide ring structures and also formation of free ions. The transmission electron microscopy study reveals that the size of TiO2 is in the order of 7 nm where as the composite size is of the order of 13 nm; further, it is observed that the TiO2 particles are intercalated to form a core shell of PANI. The X‐ray diffraction (XRD) studies show that the monoclinic structure of the composites. ac Conductivity, permittivity, and tangent loss studies on these samples suggest that these composites may be well suited for gas sensor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Polyaniline (PANI) is a well‐studied material and is the pre‐eminent electrically conducting organic polymer with the potential for a variety of applications such as in batteries, microelectronics displays, antistatic coatings, electromagnetic shielding materials, sensors and actuators. Its good environmental as well as thermal stability and electrical conductivity tunable by appropriate doping make PANI an ideal active material for several applications. In this paper, we report the synthesis of water‐dispersible colloidal PANI/iron oxide composite nanoparticles using an in situ chemical oxidation polymerization method in a micellar medium of sodium dodecylsulfate, where the cores (iron oxide) are embedded in a PANI matrix layer. Transmission electron micrographs showed evidence of the formation of an iron oxide core/PANI shell composite with a thin layer of PANI over the iron oxide cores. The results of thermogravimetric, Fourier transform infrared and UV‐visible analysis indicated that the iron oxide nanoparticles could improve the composite thermal stability possibly due to the interaction between iron oxide particles and PANI backbone. We believe that the synthetic route described can also be adapted for the assembly of hierarchical structures of other metal oxides or hydroxides onto various cores. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The kinetics of hydrogen oxidation reaction was studied in perchloric acid solution on carbon-supported Pt nanoparticles using the rotating disk electrode technique. Carbon cryogel and commercial carbon black. Vulcan XC-72 were used as catalyst supports. Pt/C catalysts were prepared by a modified polyol synthesis method in an ethylene glycol (EG) solution. Considerable effect has been observed for the specific surface area of carbon support on the fundamental properties of Pt/C catalyst, such as catalyst particle size distribution and dispersion as well as catalytic activity for the oxidation of hydrogen. X-ray diffraction (XRD) and transmission electron microscopy (TEM) images show that the particle size of the catalyst decreases with the increase of specific surface area of carbon support. Cyclic voltammetry (CV) was used for determination of the actual exposed surface area of catalyst particles. It was found that Pt catalyst prepared by using the novel carbon material displayed better hydrogen electrochemical oxidation activity than the catalyst prepared by using Vulcan XC-72.  相似文献   

17.
The synthesis of polyaniline (PANI) containing different carbon nanotubes (CNTs) by in situ polymerization is reported in this study. The samples were characterized by X‐ray diffraction and scanning electron microscopy. Fourier transform infrared and ultraviolet–visible spectroscopy were used to determine the change in structure of the polymer/CNT composites. Thermogravimetric analysis showed that the composites had better thermal stability than the pure PANI. Photoluminescence spectra showed a blueshift in the PANI–single‐walled nanotube (SWNT) composite. Low‐temperature (77–300 K) electrical transport properties were measured in the absence and presence of a magnetic field up to 1 T. Direct‐current conductivity exhibited a nonohmic, three‐dimensional variable range hopping mechanism. The room‐temperature magnetoconductivity of all of the investigated samples except the PANI–SWNT composite were negative; however, it was positive for the PANI–SWNT composite, and its magnitude decreased with increasing temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Polyaniline (PANI) as an excellent conducting polymer material has been used to synthesize 8‐hydroxyquinoline aluminum quinoline/polyaniline (Alq3/PANI) composites with core‐shell structure which is expected to form ultra‐conjugated system between core/shell and be used as organic electronic material. Alq3 was coated by sodium dodecyl benzene sulfonate doped PANI via in situ polymerization of aniline on the surface of Alq3. The morphology, structure crystallinity, and thermal stability of synthesized composite were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermal gravimetric analysis. Results indicated that the composite is core‐shell structure and exhibits good thermal stability. Conductivity of composite was investigated and showed that Alq3 as core in composite which improved the conductivity of pristine PANI, indicating that electronic interactive effect was formed between core and shell. POLYM. COMPOS., 36:272–277, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts   总被引:1,自引:0,他引:1  
Mesocarbon microbeads (MCMB) as Pt catalyst supports were characterized by X-ray electron diffraction, thermal field emission scanning electron microscope and electrochemical analysis. MCMB with different pretreatment were used as the catalyst supports. The XRD patterns show the existence of Pt and the micrograph of SEM shows Pt is absorbed uniformly on the surface of MCMB particles and the platinum grain size is ca. 3-5 nm. The effect of the pretreatment of the support on the catalyst performance of methanol electrooxidation was studied. Electrochemical analysis shows that MCMB are excellent candidates to be used as the support of catalyst for methanol electrochemical oxidation. The catalyst with MCMB boiled in KOH for 1 h as support exhibits a high catalytic activity during the electrooxidation of methanol.  相似文献   

20.
T. Zhou  H. Wang  S. Ji  H. Feng  R. Wang 《Fuel Cells》2014,14(2):296-302
Carbon materials derived from biomass are economical and simple. Here, a okara‐derived carbon (ODC) was prepared by carbonized cheap and abundant okara at 800 °C in N2 atmosphere. A high degree of graphitization, mesoporous structure and large specific surface area of ODC were proved by Raman spectroscopy, nitrogen adsorption–desorption isotherms, X‐ray diffraction, Fourier transform infrared spectra and scanning electron microscope. The ODC can be used as support of platinum nanoparticles, and the catalytic performance for methanol electro‐oxidation of its was measured by cyclic voltammetry and CO stripping voltammetry. The results showed that Pt/ODC catalyst had higher electrocatalytic activity and the resistance to poisoning ability toward methanol electrooxidation than the Pt/C catalyst prepared under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号