首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the design of the metamorphic buffer of In0.7Al0.3As/In0.75Ga0.25As metamorphic nanoheterostructures for high-electron-mobility transistors (HEMTs) on their electrical parameters and photoluminescence properties is studied experimentally. The heterostructures are grown by molecular-beam epitaxy on GaAs (100) substrates with linear or step-graded In x Al1 ? x As metamorphic buffers. For the samples with a linear metamorphic buffer, strain-compensated superlattices or inverse steps are incorporated into the buffer. At photon energies ?ω in the range 0.6–0.8 eV, the photoluminescence spectra of all of the samples are identical and correspond to transitions from the first and second electron subbands to the heavy-hole band in the In0.75Ga0.25As/In0.7Al0.3As quantum well. It is found that the full width at half-maximum of the corresponding peak is proportional to the two-dimensional electron concentration and the luminescence intensity increases with increasing Hall mobility in the heterostructures. At photon energies ?ω in the range 0.8–1.3 eV corresponding to the recombination of charge carriers in the InAlAs barrier region, some features are observed in the photoluminescence spectra. These features are due to the difference between the indium profiles in the smoothing and lower barrier layers of the samples. In turn, the difference arises from the different designs of the metamorphic buffer.  相似文献   

2.
Very high purity In00.53Ga0.47As layers were grown by molecular beam epitaxy (MBE). Origins ofn-type impurities in undoped In0.53Ga0.47As grown on an InP:Fe substrate were systematically examined. The most possible origins were impurities diffusing from the InP:Fe substrate and those contained in As molecular beam. These impurities were dramatically reduced by using an InAlAs buffer layer and a growth condition of high substrate temperature and low As pressure. The lowest electron concentration of the In00.53Ga0.47As layer wasn = 1.8 × 1013 cm-3 with mobilitiesμ = 15200 cm2/Vs at 300 K andμ = 104000 cm2/Vs at 77 K.  相似文献   

3.
Thermal properties of metamorphic InP-InGaAs heterojunction bipolar transistors (HBTs) on GaAs substrates using a linearly graded InGaP buffer have been investigated. Compared to the widely used InAlAs metamorphic buffer, InGaP offers better thermal properties resulting in a much smaller thermal resistance for the metamorphic HBTs (MHBTs). Theoretical calculations of the thermal resistance of devices have been made based on a simple constant heat-spreading model, and the results are shown to be consistent with experimental results. It has been made clear that the smaller thermal resistance measured from the MHBTs using a linearly graded InGaP buffer is due to the small bowing parameters and high thermal conductivity of the binary endpoints. Although the use of InGaP as a buffer may slightly degrade the devices thermal properties compared to one using InP directly on GaAs substrate, it gives more freedom to the growth optimization of metamorphic buffer by using compositional grading. With regards to the thermal conductivity and flexible growth optimization, InGaP metamorphic buffer could be considered as an important alternative to the existing InAlAs and InP schemes.  相似文献   

4.
Strained AlxIn1−xAs/Ga0.47In0.53As heterojunction N-p+ diodes and heterojunction bipolar transistors (HBTs) have been grown on InP substrates by solid-source molecular-beam epitaxy, fabricated, and characterized. To determine the effects of the conduction-band discontinuity at the emitter-base heterojunction on turn-on voltage and ideality factor, a strained Al0.7In0.3As layer is inserted in the emitter near the base. Changes in transport across the junction are observed as a function of the strained-layer position and thickness. These results were used to implement strained emitter HBTs.  相似文献   

5.
We have successfully grown bulk In0.53Ga0.47As on InP using tertiarybutylarsine (TBA), trimethylindium and trimethylgallium. The growth temperature was 602° and the V/III ratio ranged from 19 to 38. Net carrier concentrations were 2 – 4 × 1015 cm-3, n-type, with a peak 77 K mobility of 68,000 cm2/V. sec. Increasing compensation was observed in In0.53Ga0.47As grown at higher V/III ratios. PL spectra taken at 5 K revealed strong near bandgap emission at 0.81 eV—with the best sample having a FWHM of 2.5 meV. At lower energies, donor-acceptor pair transitions were evident. Strong and sharp 5 K PL emission was observed from InP/In0.53Ga0.47As/InP quantum wells grown with TBA.  相似文献   

6.
InP/In0.53Ga0.47As/InP double heterojunction bipolar transistors (HBTs) were grown on GaAs substrates. A 140 GHz power-gain cutoff frequency fmax and a 207 GHz current-gain cutoff frequency fτ were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BVCEO was 5.5 V, while the dc current gain β was 76. High-thermal-conductivity InP metamorphic buffer layers were employed in order to minimize the device-thermal resistance  相似文献   

7.
This study is devoted to the search for new possibilities of characterizing crystal-structure features using high-resolution X-ray diffraction. The emphasis is on the scanning mode across the diffraction vector (ω-scanning), since researchers usually pay little attention to this mode, and its capabilities have not yet been completely revealed. For the [011] and [01\(\bar 1\)] directions, the ω-peak half-width and the average tilt angle of the sample surface profile are compared. The diagnostic capabilities of X-ray scattering mapping are also studied. The objects of study are semiconductor nanoheterostructures with an InAlAs/InGaAs/InAlAs quantum well and an InxAl1–xAs metamorphic buffer grown by molecular-beam epitaxy on InP and GaAs substrates. Such nanoheterostructures are used to fabricate microwave transistors and monolithic integrated circuits. The objects under study are more completely characterized using the Hall effect, atomic-force microscopy, and low-temperature photoluminescence spectroscopy at 79 K.  相似文献   

8.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBTs) were grown on GaAs substrates. A 284-GHz power-gain cutoff frequency f/sub max/ and a 216-GHz current-gain cutoff frequency f/sub /spl tau// were obtained, presently the highest reported values for metamorphic HBTs. The breakdown voltage BV/sub CEO/ was >5 V while the dc current gain /spl beta/ was 21. High thermal conductivity InP metamorphic buffer layers were employed in order to minimize the device thermal resistance.  相似文献   

9.
Effectively atomically flat interfaces over a macroscopic area (“(411)A super-flat interfaces”) were successfully achieved in In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) grown on (411)A InP substrates by molecular beam epitaxy (MBE) at a substrate temperature of 570°C and V/III=6. Surface morphology of the In0.53Ga0.47As/In0.52Al0.48As QWs was smooth and featureless, while a rough surface of those simultaneously grown on a (100) InP substrate was observed. Photoluminescence (PL) linewidths at 4.2 K from the (411)A QWs with well width of 0.6–12 nm were 20–30 % narrower than those grown on a (100) InP substrate and also they are almost as narrow as each of split PL peaks for those of growth-interrupted QWs on a (100) InP substrate. In the case of the (411)A QWs, only one PL peak with very narrow linewidth was observed from each QW over a large distance (7 mm) on a wafer.  相似文献   

10.
利用气态源分子束外延技术在InP衬底上生长了包含InAlAs异变缓冲层的In0.83Ga0.17As外延层.使用不同生长温度方案生长的高铟InGaAs和InAlAs异变缓冲层的特性分别通过高分辨X射线衍射倒易空间图、原子力显微镜、光致发光和霍尔等测量手段进行了表征.结果表明, InAlAs异变缓冲层的生长温度越低, X射线衍射倒易空间图 (004) 反射面沿Qx方向的衍射峰半峰宽就越宽, 外延层和衬底之间的倾角就越大, 同时样品表面粗糙度越高.这意味着材料的缺陷增加, 弛豫不充分.对于生长在具有相同生长温度的InAlAs异变缓冲层上的In0.83Ga0.17As外延层, 采用较高的生长温度时, X射线衍射倒易空间图 (004) 反射面沿Qx方向的衍射峰半峰宽较小, 77K下有更强的光致发光, 但是表面粗糙度会有所增加.这说明生长温度提高后, 材料中的缺陷得到抑制.  相似文献   

11.
The results of studies of the surface morphology, electrical parameters, and photoluminescence properties of In0.38Al0.62As/In0.38Ga0.62As/In0.38Al0.62As metamorphic nanoheterostructures on GaAs substrates are reported. Some micron-sized defects oriented along the [011] and \([0\bar 11]\) directions and corresponding to regions of outcropping of stacking faults are detected on the surface of some heterostructures. The Hall mobility and optical properties of the samples correlate with the surface defect density. In the photoluminescence spectra, four emission bands corresponding to the recombination of charge carriers in the InGaAs quantum well (1–1.2 eV), the InAlAs metamorphic buffer (1.8–1.9 eV), the GaAs/AlGaAs superlattice at the buffer-substrate interface, and the GaAs substrate are detected. On the basis of experimentally recorded spectra and self-consistent calculations of the band diagram of the structures, the compositions of the alloy constituents of the heterostructures are established and the technological variations in the compositions in the series of samples are determined.  相似文献   

12.
We report, for the first time, the successful fabrication of aluminum-free metamorphic (MM) InP/In0.53 Ga0.47 As/InP double heterojunction bipolar transistors (DHBTs) on GaAs substrates with a linearly graded InxGa1-xP buffer grown by solid-source molecular beam epitaxy (SSMBE). Devices with 5×5 μm2 emitters display a peak current gain of 40 and a common-emitter breakdown voltage (BVCE0) higher than 9 V, a current gain cut-off frequency (fT) of 48 GHz and a maximum oscillation frequency (fmax) of 42 GHz. A minimum noise figure of 2.9 dB and associated gain of 19.5 dB were measured at a collector current level of 2.6 mA at 2 GHz. Detailed analysis suggests that the degradation of the base-emitter heterojunction interface and the increase of bulk recombination are the most probable causes for the poorer device performance of current metamorphic HBTs compared with lattice-matched HBTs  相似文献   

13.
The influence of the width of the quantum well L and doping on the band structure, scattering, and electron mobility in nanoheterostructures with an isomorphic In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum well grown on an InP substrate are investigated. The quantum and transport mobilities of electrons in the dimensionally quantized subbands are determined using Shubnikov-de Haas effect measurements. These mobilities are also calculated for the case of ionized-impurity scattering taking into account intersub-band electron transitions. It is shown that ionized-impurity scattering is the dominant mechanism of electron scattering. At temperatures T < 170 K, persistent photoconductivity is observed, which is explained by the spatial separation of photoexcited charge carriers.  相似文献   

14.
In this paper, the characteristics of InP/InGaAs abrupt, setback, and heterostructure-emitter heterojunction bipolar transistors (HBTs) are comparatively investigated by twodimensional simulation analysis. In the setback (heterostructure-emitter) HBT, a thin 50 ? undoped In0.53Ga0.47As (n-In0.53Ga0.47As) layer is inserted between n-InP emitter and p +-InGaAs base layers to lower the energy band at emitter side for decreasing the collector-emitter offset voltage. The simulated results exhibits that the abrupt HBT has the largest current gain, the largest collector-emitter offset voltage, and the smallest unity gain cutoff frequency. While, the setback and heterostructure-emitter HBTs exhibit the smallest current gain and offcet voltage, respectively. Consequentially, the demonstration and comparison of the three-type HBTs provide a promise for design in circuit applications.  相似文献   

15.
We demonstrate that the electrical quality of junctions fabricated in lattice-mismatched In0.75Ga0.25As on InP grown by molecular beam epitaxy can be improved with the addition of in situ anneals in the buffer layer that separates the substrate from the In0.75Ga0.25As device layers. Near infrared photodetectors fabricated using this material had dark current densities of approximately 2.5 mA/cm2 at a reverse bias of 1 V, which is more than one order of magnitude smaller than commercially available photodetectors grown using vapor phase epitaxy. Transmission electron microscopy revealed that dislocations due to the lattice mismatch between the substrate and the epitaxial layer are confined primarily to the buffer layer for all samples studied. No significant differences in x-ray diffraction spectra or dislocation distribution were observed on samples with and without in situ annealing. Atomic force microscopy indicated that all samples had a crosshatch pattern, and that the average surface roughness of the sample that contained in situ anneals is a factor of three greater than the sample without in situ anneals.  相似文献   

16.
The method of molecular-beam epitaxy is used to grow a In0.42Al0.58As/In0.42Ga0.58As/In0.42Al0.58As nanoheterostructure with a step-graded metamorphic buffer on a GaAs substrate. The root-mean-square value of the surface roughness is 3.1 nm. A MHEMT (metamorphic high-electron-mobility transistor) with a zigzag-like gate of a length of 46 nm is fabricated on the basis of this nanoheterostructure; for this MHEMT, the cutoff frequencies for the current and power gain are f T = 0.13 THz and f max = 0.63 THz, respectively.  相似文献   

17.
InGaAs/InP npn heterojunction bipolar transistors (HBTs) have been fabricated from LPE layers grown on semi-insulating InP substrates for application to integrated circuits. The inverted emitter configuration is used, which allows the growth of the active layers without any additional steps. The HBTs show stable characteristics without any hysteresis and with current gains up to 25 for 0.7 ?m base width. To our knowledge this is the first report of InGaAs/InP HBTs on a semi-insulating substrate.  相似文献   

18.
Carbon dopedp-type GaAs and In0.53Ga0.47As epitaxial layers have been grown by low-pressure metalorganic chemical vapor deposition using CC14 as the carbon source. Low-temperature post-growth annealing resulted in a significant increase in the hole concentration for both GaAs and In0.53Ga0.47As, especially at high doping levels. The most heavily doped GaAs sample had a hole concentration of 3.6 × 1020 cm−3 after a 5 minute anneal at ≈400° C in N2, while the hole concentration in In0.53Ga0.47As reached 1.6 × 1019 cm−3 after annealing. This annealing behavior is attributed to hydrogen passivation of carbon acceptors. Post-growth cool-down in an AsH3/H2 ambient was found to be the most important factor affecting the degree of passivation for single, uncapped GaAs layers. No evidence of passivation is observed in the base region of InGaP/GaAs HBTs grown at ≈625° C. The effect ofn-type cap layers and cool-down sequence on passivation of C-doped InGaAs grown at ≈525° C shows that hydrogen can come from AsH3, PH3, or H2, and can be incorporated during growth and during the post-growth cool-down. In the case of InP/InGaAs HBTs, significant passivation was found to occur in the C-doped base region.  相似文献   

19.
A very high electron mobility pseudomorphic In0.8Ga0.2As heterostructure is successfully grown on InP both by the elimination of the overshoot of flux densities and by the precise control of the flux ratio through a new calibration technique of RHEED oscillations in an MBE system. The critical layer thickness for the pseudomorphic growth of InGaAs on InP is found to follow the energy balance model, and a very high 2DEG mobility of over 1.5 and 16 m2/Vs at 293 and 10 K, respectively, is obtained.  相似文献   

20.
A drastic decrease in the sheet carrier concentration of modulation-doped Al0.48In0.52As/Ga0.47In0.53As/InP heterostructures has been observed after O2 plasma treatment followed by thermal treatment up to 350°C. The decrease in sheet carrier concentration, which is speculated to be caused by both plasma damage and impurities penetrating from the surface of the epilayer, can be suppressed substantially by using PH3 plasma treatment prior to the O2 plasma and thermal treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号