首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a compact microstrip lowpass filter (LPF) using triangle-shaped resonators is presented. The designed LPF includes three symmetric triangle-shaped resonators to provide a suitable passband and sharp response. A suppressing unit composed of several suppressing cells is designed to obtain a wide rejection band and low insertion loss in the passband. The fabricated LPF has been measured and indicts that it has −3 dB cut off frequency at 5.15 GHz. The rejection band has been expended from 5.51 GHz to 43.2 GHz with maximally flat return loss in this region nearby to 0 dB. Also, simulation and experimental results show that the proposed filter has a very flat group delay in the passband, which is the minimum value in comparison with the published works since 2017.  相似文献   

2.
This paper reports the design of a compact low pass filter (LPF) with wide stop band region using tri-section stepped impedance resonators in microstrip medium. Experimental results of a low pass filter designed at 1 GHz have been compared against the analytical and EM simulation results for the validation of the design. Results are satisfactorily matching each other. The maximum insertion of the measured filter is 0.2 dB and minimum return loss is 13.5 dB over the pass band. The stop band rejection is better than 20 dB from 1.5 GHz to 4.2 GHz and hence wide stop band performance is achieved. Overall size of the filter is 30 mm × 20 mm × 0.78 mm which is 0.1λ × 0.066λ × 0.0026λ at 1 GHz.  相似文献   

3.
In this article, a novel microstrip lowpass filter (LPF) with specifications such as sharp cut-off, wide stopband, low insertion loss and high return loss using tapered resonator is presented. The LPF has cut-off frequency of 1.11 GHz, where unwanted harmonics are suppressed by novel tapered cells. The bandwidth is enhanced, and the size is reduced as compared to the conventional tapered filter. The transition band is approximately 0.29 GHz from 1.11 to 1.4 GHz with corresponding attenuation levels of –3 and –20 dB, respectively. The stopband with greater than –20 dB rejection is from 1.4 to 8.9 GHz, insertion loss in the passband is less than 0.1 dB, return loss is less than –18 dB and the overall size of the filter is 0.12 × 0.073 λg. The proposed filter is fabricated and measured. The simulation and measurement results are in good agreement. This LPF is designed for microwave communication applications, especially wireless video transmitters.  相似文献   

4.
In this paper, a compact microstrip lowpass filter (LPF) is designed, analyzed, simulated, and tested. The proposed design that consists of a basic part in the central section of the structure and two parts of suppression of harmonics that are inserted in the first and last sections of the basic part, have wide-stop band, high suppression factor (−38 dB attenuation level from 2.4 GHz up to 27.4 GHz), low normalized size and sharp roll-off. The proposed LPF has a −3 dB cut-off frequency of 2.4 GHz, a wide stopband bandwidth around 11th harmonic suppression and an insertion loss less than 0.1 dB at passband. This filter has been fabricated and tested and good agreement is observed between the simulated and measured results.  相似文献   

5.
In this paper, a compact lowpass filter (LPF) with ultra-wide rejection band has been presented. In fact, a novel meandered semi-hairpin resonator has been used and the stopband characteristics have been improved by using a combinatorial suppressing unit. The suppressing unit contains a combination between T-shaped and semi-circular patches, which are loaded symmetrically to the designed resonator. For the proposed LPF, the-3 dB cut-off frequency has been adjusted to 2.2 GHz. After simulations, the proposed LPF has been fabricated and tested. The experimental results validated that the rejection bandwidth is expanded from 2.471 GHz to 28.62 GHz with corresponding attenuation level of −20 dB. The transition band is only 0.271 GHz from 2.2 GHz to 2.471 GHz with corresponding attenuation levels of −3 dB to −20 dB, respectively. In addition, the measured maximum insertion loss and return loss in the passband, from DC to 2.04 GHz (93% of the passband region) are 0.2 dB and 17 dB, respectively.  相似文献   

6.
微波频段的宽带滤波器一般具有通带插入损耗大,带外抑制性差等问题,为了解决这个问题,采用具有慢波效应的缺陷地结构(DGS)和缺陷微带结构(DMS),设计了一种新型微波频段的超宽带滤波器。分别利用电磁仿真软件HFSS和平面印制板技术对其进行建模仿真和实物加工。实测与仿真结果良好吻合,带内插入损耗优于1.64dB,回波损耗优于13.93dB,通带范围在2.75~8.3GHz,实现相对带宽100.45%,高低阻带均抑制在-10dB以下,且该滤波器结构紧凑,体积小。  相似文献   

7.
在传统互补开环谐振(CSSRR)结构上添加T型枝节,形成一种新型复合左右手传输线(CRLH TL)。采用理论分析、电磁仿真和电路仿真研究其电磁特性,给出了单元结构的等效电路,计算了色散曲线,证明该结构是一种具有双频特性的CRLH结构。利用该结构设计、制作并测试了一种C波段四频微带天线,测试结果表明该天线具有较宽的阻抗带宽和很好的辐射特性。  相似文献   

8.
分析比较了不同种类衬底上无源器件(片上电感和电容)的损耗机理,在OPS(氧化多孔硅)和HR(高阻硅)低损耗衬底上分别实现了片上低通滤波器.为了研究衬底损耗,设计了平面螺旋电感,其Q值在两种衬底上的仿真结果都超过了20.在OPS衬底上的低通滤波器实测-3dB带宽为2.9GHz,通带插入损耗在500MHz为0.87dB;在HR衬底上的低通滤波器实测-3dB带宽为2.3GHz,通带插入损耗在500MHz为0.42dB.  相似文献   

9.
设计了一款极化和角度不敏感的宽带频选吸波体,在X 波段实现了宽带透射窗口以及包含L波段在内的宽频带吸收。该频选吸波体采用频率选择表面与电磁超材料吸波体相结合的方式,通过级联加载多层耦合型频率选择表面和双层高阻表面完成总体结构设计。理论上,利用等效电路法对多层耦合型频率选择表面及整体结构展开分析,论证频选结构和频选吸波体的谐振机理。数值仿真结果显示,该频选吸波体可以实现8.1~11.7GHz频段内的宽频带透射,以及1.18~4 GHz、15~18 GHz 频段内的宽频带吸收,其中透射窗口的插入损耗不大于3 dB。将该频选吸波体作为平面雷达天线罩与微带天线相结合,分析天线的辐射性能和散射特性。研究结果显示,天线在工作频带内保持了良好的辐射性能,而在带外实现了RCS 的有效缩减,达到了天线系统的隐身目的。  相似文献   

10.
A novel asymmetrical Pi-shaped defected ground structure (DGS) with 3-interations Koch fractal curves is proposed to design a microstrip low-pass filter (LPF) with ultra-wide stop-band (SB). The proposed LPFs with a single resonator and two cascaded resonators are both designed, simulated, manufactured and measured. Simulation and experiment results demonstrate that the designed LPF has a very sharp transition band (TB) and an ultra-wide SB performance compared with the existed similar symmetrical and asymmetrical DGS. The proposed LPF with two cascaded resonators is with a compact size of 36.8 mm×24.0 mm, a very low insertion loss of less than 0.7 dB under 1.9 GHz, and a wide SB from 2.2 GHz to 8 GHz with rejection of larger than 30 dB.  相似文献   

11.
介绍了一种基于低温共烧陶瓷(LTCC)工艺研制而成的小型化半集总高隔离度双工器.该双工器由L波段集总参数低通滤波器和X波段阶跃阻抗( SIR)分布参数带通滤波器组成.通过电磁仿真软件的仿真优化,实际加工滤波器的测试结果与软件仿真结果吻合.其中低通滤波器1dB截止频率为1.46GHz,带通滤波器中心频率为8.3GHz,1dB带宽为0.6GHz,通带内插损小于3.5dB,X波段端口对L波段端口隔离度大于60dB.该小型化LTCC双工器已成功应用于某毫米波战场识别系统的T/R组件中.  相似文献   

12.
A new type of low-pass filter based on a coupled line and transmission line theory is proposed for suppressing harmonics and spurious frequency. The seventh-order coupled-line low-pass filter with strip line configuration was fabricated using a high-temperature superconducting (HTS) thin film on MgO(100) substrate. The seventh-order low-pass filter has five attenuation poles in the stop band. Its cutoff frequency is 1 GHz with a 0.01-dB ripple level. The fabricated filter exhibits a characteristic stop band in the range from 1 to 7 GHz. A measured insertion loss at the pass-band of the HTS low-pass filter is 0.2 dB at 77 K, while the maximum return loss is 17.1 dB. These results match well with those obtained by the EM simulation. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range, and low insertion loss  相似文献   

13.
基于复合左右手传输线基本原理, 提出了电磁带隙结构的双负媒质微带天线设计方法, 并制作了2.45 GHz的微带天线.该微带天线由2个单元的电磁带隙组成, 此电磁带隙结构经过优化采用非均匀结构, 可通过调整贴片尺寸和金属过孔半径来改变电磁带隙结构单元等效电路的并联部分电容和电感, 进而调节天线的谐振频率.设计并制作的微带天线其贴片整体尺寸为53.2 mm×19.8 mm, 在2.45 GHz的回波损耗为-32.6 dB, 方向图近似为8字形方向图, 最大增益为0.72 dB.仿真和测试的回波损耗、方向图符合得很好, 从而验证了这种设计方法的有效性.  相似文献   

14.
设计并制作了工作在2.2~2.8GHz的带状线结构3dB定向耦合器和2只通带分别为2.2~2.5GHz及2.5~2.8GHz的8阶微带发夹线结构带通滤波器,利用该耦合器和带通滤波器设计制作连续通带宽带双工器,并通过ADS进行仿真。由仿真结果可知,在2.2~2.8GHz双工器全频带内输入端口的反射系数S11均优于-17.00dB,通带2.2~2.5GHz带内插损S21最优为-2.09dB,通带2.5~2.8GHz带内插损S31为-2.53dB,其中两通带的交接点2.5GHz处插损约-6.5dB。实测结果与仿真结果基本吻合。  相似文献   

15.
分析比较了不同种类衬底上无源器件(片上电感和电容)的损耗机理,在OPS(氧化多孔硅)和HR(高阻硅)低损耗衬底上分别实现了片上低通滤波器.为了研究衬底损耗,设计了平面螺旋电感,其Q值在两种衬底上的仿真结果都超过了20.在OPS衬底上的低通滤波器实测-3dB带宽为2.9GHz,通带插入损耗在500MHz为0.87dB;在HR衬底上的低通滤波器实测-3dB带宽为2.3GHz,通带插入损耗在500MHz为0.42dB.  相似文献   

16.
Liu  Y. Liang  C.H. Wang  Y.J. 《Electronics letters》2009,45(17):899-900
A compact planar microstrip ultra-wideband (UWB) bandpass filter is presented. The proposed UWB filter is realised by cascading a highpass filter (HPF) and a lowpass filter (LPF). Additional U-slot defected ground structure is adopted to improve the attenuation performance in the stop band. The HPF consists of inter-digital capacitors and a short-circuited stub. The LPF achieved by a hybrid microstrip and four backside slots on the ground plane is equivalent to a typical 9-pole stepped-impedance LPF. Combining these two structures, a new UWB bandpass filter is fabricated and measured. Measured results show that the proposed bandpass filter has a wide bandwidth from 3.1 to 11 GHz, and insertion loss is less than 1.2 dB over the most central passband. It also achieves a wide stop band with 20 dB attenuation up to 20 GHz.  相似文献   

17.
林海立  毛军发  张文梅 《电子学报》2005,33(8):1506-1508
本文应用传输线理论对PBG结构带通滤波器进行分析,并在此基础上仿真、设计一种新颖的K波段的双模带通滤波器.光子带隙结构具有独特的带阻特性,对高次模具有很好的抑制特性,能够提高微波电路系统的抗干扰能力.由于PBG的慢波特性,使得带通滤波器的结构尺寸大为减小,符合系统小型化的要求.在此基础上,就这种结构应用Ensemble软件进行优化仿真.最后制作出滤波器并进行了测试.仿真结果与实验结果吻合很好,插入损耗为-4.5dB,通带中心频率为25.2GHz,-3dB带宽为1.8GHz,相对带宽7%.  相似文献   

18.
A novel electrically small composite right/left-handed transmission line (CRLH TL) cell based on the Minkowski-shaped geometry of a complementary single split ring resonator is proposed and analysed by the S parameters extraction method. EM simulation results have confirmed the roughly tri-band response of the proposed CRLH TL cell attributed to the fractal multiband nature. A tri-band bandpass filter (BPF) centred at 1.1, 2 and 2.74?GHz with minimum insertion loss 0.4, 1.1 and 1.45?dB was synthesised and fabricated by employing an additional two Hilbert-shaped quarter-wave open-circuit stubs which provided transmission zeros located between passbands to obtain high selectivity. This simple design concept was verified by measurement as well as simulation results.  相似文献   

19.
A CPW fed metamaterial inspired Quadband circularly polarized antenna is presented in this article. The proposed antenna consists of defected ground structure with a radiating stub, which is at opposite side of the feedline. A waveguide mode of analysis is carried out for split ring resonator (SRR) and complimentary split ring resonator (CSRR) to enhance the properties of metamaterials. The proposed antenna analysis is taken iteration wise and used FR-4 Material as the substrate material with Ɛr = 4.4 and analysed using ANSYS electromagnetic desktop. The designed antenna projecting the peak gain of 4.8 dB and it is working in the application bands of WLAN/ISM/Bluetooth at 2.4 GHz, 5.8 GHz and 3.35 WiMAX band, X-band downlink satellite communication system (7.25–7.75 GHz) and ITU band (8–8.5 GHz) with fractional bandwidth of about 70%. Proposed antenna exhibits circular polarization at 2.39–2.55 GHz, 3.05–3.1 GHz, 4–5 GHz and 6.3–6.64 GHz respectively. To know the signal integrity of the antenna, time domain analysis is carried out for identical antennas in two conditions (face to face and side by side) with the help of CST microwave studio. The designed antenna showing excellent correlation in measurements with respect to simulation results.  相似文献   

20.
This letter proposes a band‐pass filter (BPF) with two transmission zeros based on a combination of parallel coupling and end coupling of half‐wave transmission lines. The fabricated BPF exhibited a narrow bandwidth and two transmission zeros near the pass‐band due to the end‐coupled and shielding waveguide. At the center operation frequency of 60 GHz, the 20 dB bandwidth of the BPF is 1.0 GHz, which is almost 2% of the center operation frequency, and the insertion loss is 3.12 dB. Two transmission zeros reach approximately 40 dB at 58.5 and 62.5 GHz. The simulation results almost agree with the measured results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号