首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analytical Study of Porous Wave Absorber   总被引:2,自引:0,他引:2  
Linear potential theory is applied to the analysis of wave reflection from a composite porous wave absorber that lies on a solid foundation with a seaward slope. By adopting the mathematical model of wave-induced flow in a porous medium, the interaction between water waves and a porous wave absorber is investigated. An extended linear refraction-diffraction model for surface waves is applied to the sloping region in front of the porous absorber. Using the eigenfunction expansions and the finite-difference method, an analytical study is undertaken to predict the wave reflection from such a composite porous absorber. The reflection behavior is discussed for several wave conditions, and the functional efficiency of this absorber is evaluated. It is noted that the present numerical results agree very well with the experimental results available in the literature.  相似文献   

2.
There is a paradoxical phenomenon in earlier studies when the incoming water wave is parallel to a porous breakwater, the water wave permeates completely without regard to the largeness of the the porosity of the porous breakwater. For solving the problem of the water waves obliquely impacting upon the thin porous wall, a new boundary condition on the thin porous wall—which can remedy the above mentioned paradoxical phenomenon—is proposed based on the concept that the incident angle remains unchanged when the water wave permeates into the wall. According to this new boundary condition, an analytic solution of an oblique water wave impacting on a thin porous wall of any permeability is obtained. It is found that the above paradoxical phenomenon, as the water wave is parallel to a thin porous wall, disappears. And, as the incident angle approaches 90°, the reflection coefficient and the transmission coefficient reasonably converge to 1 and 0, respectively, while on the contrary, those in the earlier investigations converge to 0 and 1.  相似文献   

3.
Short-Wave and Wave Group Scattering by Submerged Porous Plate   总被引:1,自引:0,他引:1  
An analytical solution for waves propagating through a horizontal porous plate of finite thickness is obtained. The objective of the plate is to reduce the incident short-wave energy and the long-wave energy as well. Consequently, in this study the plate is analyzed in a global perspective [i.e., considering its response to obliquely incident short waves (both regular and irregular) and wave groups (with the consequent generation of free and locked long waves)]. To solve the propagation of regular and irregular waves, an eigenfunction expansion is used and the results are verified with experimental data showing good agreement. The propagation of a wave group past a horizontal porous plate is studied using a multiple-scale perturbation method, and an analytical solution is presented. The results show that the generated long waves are present on both sides of the plate and that maximum short-wave reflection is associated with maximum long-wave transmission.  相似文献   

4.
On a Possible Role of Rayleigh Surface Waves in Dynamic Slope Failures   总被引:1,自引:0,他引:1  
This contribution addresses the effect of a surface wave on the dynamic behavior of a slope. In particular, the interaction of a Rayleigh surface wave, possibly generated by an earthquake or nearby blasting, with a simple wedge-shaped slope is considered. A two-dimensional elastodynamic analysis suggests that the amplitudes and phase shifts of the surface waves reflected and transmitted at the crest strongly depends on the inclination of the slope face, and the superimposition of the reflected and incident waves may induce large stress amplification and thus produce open cracks in the top surface of the slope. The computational semianalytical results are used to investigate the generation mechanism of slope failure caused in the city of Sendai dynamically by the 1978 Miyagi-ken-oki, Japan, earthquake. Finally, the significance of the effect of Rayleigh wave propagation on dynamic slope stability is discussed in comparison with the influence of body waves.  相似文献   

5.
Waves and currents are essential elements in the design of an artificial surfing reef (ASR). ASRs are primarily designed to optimize the surfing conditions (i.e., increase the surfability of the incoming waves) possibly in combination with the shoreline protection from erosion. The currents generated by waves breaking on the ASR play an important role in the surfability through the wave-current interaction (WCI). Depending on the design, the WCI may negatively affect the surfability by causing the waves to break prematurely due to the current-induced wave steepening. In addition, wave breaking tends to become more irregular due to the temporal variability of the underlying currents. To mitigate the negative effects of wave breaking induced currents on the surfability, three ASR layouts are examined through detailed laboratory experiments. The layouts differ in the alongshore separation distance between two symmetrical reef sides. The ensuing flow circulations are examined in detail with both in situ current meters and video observations of surface drifters. This is done for regular incident waves, bichromatic incident waves, and irregular incident waves, all with equal energy. A data analysis shows that for a given layout the mean flow patterns for regular, bichromatic, and irregular waves are qualitatively similar, with oblique rip currents exiting at either side of the reef and strong flow circulations onshore of the gap in between the two reef sides. Increasing the separation distance leads to a significant reduction of the obliquely exiting rip currents at the outer sides of the reef, but an increase in the flow circulation onshore of the gap. This has a positive effect on the surfability by reducing the negative effects associated with the WCI on the wave breaking, thus, providing longer rides.  相似文献   

6.
A theory of transfer function method for separating two-dimensional wave data obtained in laboratory experiments into incident and reflected waves is presented in this paper. Based on the linear wave assumption, specific transfer functions are derived from mathematical manipulations of the composite wave field, and the corresponding impulse response functions are obtained by implementing the inverse Fourier transform of transfer functions. These response functions are used to perform convolution integrals with time series data measured by fixed wave gauges at different locations in a wave flume and then to separate the incident and reflected waves. Compared with other available methods, the phase difference between two wave signals is considered in the transfer functions. Thus, the separation of waves does not involve the phase calculation and the corresponding error is avoided. The validity of the present method is examined through numerical examples and laboratory experiments of physical models carried out in a wave flume. A comparison of results from physical experiments shows that the present method gives much better estimates of incident and reflected waves than other methods available in the literature.  相似文献   

7.
Basin-scale internal waves are inherently nonhydrostatic; however, they are frequently resolved features in three-dimensional hydrostatic lake and coastal ocean models. Comparison of hydrostatic and nonhydrostatic formulations of the Centre for Water Research Estuary and Lake Computer Model provides insight into the similarities and differences between these representations of internal waves. Comparisons to prior laboratory experiments are used to demonstrate the expected wave evolution. The hydrostatic model cannot replicate basin-scale wave degeneration into a solitary wave train, whereas a nonhydrostatic model does represent the downscaling of energy. However, the hydrostatic model produces a nonlinear traveling borelike feature that has similarities to the mean evolution of the nonhydrostatic wave.  相似文献   

8.
An exact analysis for three-dimensional dynamic interaction of monochromatic seismic plane waves with two lined circular parallel tunnels within a boundless fluid-saturated porous elastic medium is presented. The novel features of Biot dynamic theory of poroelasticity along with the appropriate wave field expansions, the pertinent boundary conditions, and the translational addition theorems for cylindrical wave functions are employed to obtain a closed-form solution in the form of infinite series. The analytical results are illustrated with numerical examples in which two identical tunnels, lined with concrete and embedded within water-saturated soils of distinct frame properties (i.e., soft or stiff soils), are insonified by plane fast compressional or shear waves at end-on incidence. The basic dynamic field quantities such as the hoop and axial stress amplitudes are evaluated and discussed for representative values of the parameters characterizing the system. The effects of formation material type, angle of incidence, incident wave frequency, and the proximity of the two tunnels on the liner stresses are examined. Particular attention is paid to the influence of bonding and drainage conditions at the liner/soil interface on the dynamic stress concentrations. Limiting cases are considered and good agreement with the solutions available in the literature is obtained.  相似文献   

9.
This paper presents an experimental investigation on noncohesive sediment pickup under a unidirectional steady-uniform stream flow on streamwise steeply sloping (down slope and adverse) sedimentary beds. The characteristic parameters affecting the sediment pickup, identified based on the physical reasoning and dimensional analysis of the sediment particle movement under stream flow, are the transport-stage parameter, particle parameter, and geometric standard deviation of sediment particles. A large number of experiments (426 runs) were carried out in two long rectangular ducts (closed-conduit flow) with nine types of sediments (six uniform and three nonuniform sediments), having a variation of bed slope from ?15° (adverse slope) to 25° (down slope). In an open channel flow (laboratory flume study), the uniform flow is a difficult, if not impossible, proposition for a steeply sloping channel and is impossible to obtain in an adversely sloping channel. To avoid this problem, the tests were conducted with a closed-conduit flow. Measurements included flow discharge and sediment pickup rate. The bed shear stress for a particular run was computed considering side wall correction. The experimental data were used to determine the equation of sediment pickup function through a regression analysis. The equation is adequate to estimate sediment pickup not only on horizontal and mild slopes but also on steep and adverse slopes.  相似文献   

10.
Frequency-Dependent Amplification of Unsaturated Surface Soil Layer   总被引:1,自引:0,他引:1  
This paper presents a study of the amplification of SV waves obliquely incident on a surface soil layer overlying rock formation. Special attention is placed on the influence of the saturation states of the soil layer and the bedrock on the amplification in both horizontal and vertical directions as well as on the amplitude ratios between the two directions at the surface, where the vertical and horizontal amplification and the amplitude ratios are expressed as functions of the frequency of incident waves. The analysis indicates that while the influence of the saturation state of the bedrock is insignificant, a change of the saturation state of the soil layer may have a marked impact on the vertical amplification. For typical seismic frequencies, an unsaturated soil layer can generate greater vertical amplification than a saturated layer; it can also cause larger amplitude ratios between vertical and horizontal components at the surface. The analysis further confirms the potential importance of the saturation condition of near-surface soils in site response analysis.  相似文献   

11.
Almost all variables in biology are nonstationarily stochastic. For these variables, the conventional tools leave us a feeling that some valuable information is thrown away and that a complex phenomenon is presented imprecisely. Here, we apply recent advances initially made in the study of ocean waves to study the blood pressure waves in the lung. We note first that, in a long wave train, the handling of the local mean is of predominant importance. It is shown that a signal can be described by a sum of a series of intrinsic mode functions, each of which has zero local mean at all times. The process of deriving this series is called the "empirical mode decomposition method." Conventionally, Fourier analysis represents the data by sine and cosine functions, but no instantaneous frequency can be defined. In the new way, the data are represented by intrinsic mode functions, to which Hilbert transform can be used. Titchmarsh [Titchmarsh, E. C. (1948) Introduction to the Theory of Fourier Integrals (Oxford Univ. Press, Oxford)] has shown that a signal and i times its Hilbert transform together define a complex variable. From that complex variable, the instantaneous frequency, instantaneous amplitude, Hilbert spectrum, and marginal Hilbert spectrum have been defined. In addition, the Gumbel extreme-value statistics are applied. We present all of these features of the blood pressure records here for the reader to see how they look. In the future, we have to learn how these features change with disease or interventions.  相似文献   

12.
13.
A two-fluid solver which can be applied to a variety of hydraulic flow problems has been developed. The scheme is based on the solution of the incompressible Euler equations for a variable density fluid system using the artificial compressibility method. The computational domain encompasses both water and air regions and the interface between the two fluids is treated as a contact discontinuity in the density field which is captured automatically as part of the solution using a high resolution Godunov-type scheme. A time-accurate solution has been achieved by using an implicit dual-time iteration technique. The complex geometry of the solid boundary arising in the real flow problems is represented using a novel Cartesian cut cell technique, which provides a boundary fitted mesh without the need for traditional mesh generation techniques. A number of test cases including the classical low amplitude sloshing tank and dam-break problems, as well as a collapsing water column hitting a downstream obstacle have been calculated using the present approach and the results compare very well with other theoretical and experimental results. Finally, a test case involving regular waves interacting with a sloping beach is also calculated to demonstrate the applicability of the method to real hydraulic problems.  相似文献   

14.
A Lagrangian, nonhydrostatic, Boussinesq model for weakly nonlinear and weakly dispersive flow is presented. The model is an extension of the hydrostatic model—dynamic river model. The model uses a second-order, staggered grid, predictor-corrector scheme with a fractional step method for the computation of the nonhydrostatic pressure. Numerical results for solitary waves and undular bores are compared with Korteweg-de Vries analytical solutions and published numerical, laboratory, and theoretical results. The model reproduced well known features of solitary waves, such as wave speed, wave height, balance between nonlinear steepening and wave dispersion, nonlinear interactions, and phase shifting when waves interact. It is shown that the Lagrangian moving grid is dynamically adaptive in that it ensures a compression of the grid size under the wave to provide higher resolution in this region. Also the model successfully reproduced a train of undular waves (short waves) from a long wave such that the predicted amplitude of the leading wave in the train agreed well with published numerical and experimental results. For prismatic channels, the method has no numerical diffusion and it is demonstrated that a simple second-order scheme suffices to provide an efficient and economical solution for predicting nonhydrostatic shallow water flows.  相似文献   

15.
In this study, an analytic solution of wave interaction with a rigid porous medium above a poro-elastic sandy bottom is derived to investigate the attenuation of the surface wave and the wave-induced soil response. In the model, both inertial and damping effects of the flow are considered in the rigid porous region using the potential theory, while the consolidation theory is adopted in the sand region. A new complex dispersion relation involving parameters of the rigid porous and the poro-elastic medium is obtained. The analytic solutions are verified by some special cases, such as wave interaction with a porous structure over an impermeable bottom or wave interaction with a poro-elastic medium only. Numerical results indicate that the wave attenuation is highly dependent upon the thickness of the rigid porous layer, the soil stiffness, and their respective coefficients of permeability. Increasing the thickness of the rigid porous layer will shorten the wavelength of the surface wave regardless of the sand coarseness. The pore pressure in fine-sand is larger than in coarse sand, with both decaying with wave progression. It is also found that increasing the thickness of the rigid porous medium will effectively reduce the pore pressure in the sand. For the applications, an extended hyperbolic mild-slope equation is finally obtained, based on the basic analytic solutions. Examples of the wave height transformation over submerged permeable breakwaters on a slope sandy seabed are given. The simulated results show that the wave decay of the coarse sand seabed is larger than those of fine-sand and impermeable seabeds when waves pass after the submerged porous breakwater. The wave damping versus the friction factor for various height of the submerged breakwater is discussed.  相似文献   

16.
Bioremediation of oil spills on tidally influenced beaches commonly involves the addition of a nutrient solution to the contaminated region of the beach at low tide to stimulate the growth of indigenous oil-degrading bacteria. Maximizing the residence time of nutrients in the beach and subsequently their contact time with microorganisms is a main goal for successful bioremediation. Therefore, understanding the effects of the tide on water flow and solute transport in a beach is an essential task for designing a nutrient application strategy. We investigated these effects by conducting a tracer study in a laboratory beach simulating nutrient application on natural beaches. The study consisted of applying, at low tide, a conservative tracer solution onto the beach surface near the high-tide line and monitoring its movement in the beach subsurface. The tidal motion caused the applied plume to move downward and seaward. The downward movement occurred during rising tides, while the seaward movement occurred mainly during falling tides. The results indicate that nutrients should be applied at the high-tide line during low tides. Guidelines for scaling up the results to natural beaches are provided along with an example.  相似文献   

17.
To determine the stress state of a wire rope is tedious although analytical solution of a simple rope subjected to static load is available. While facing the problems involving complex ropes, it is usual practice to take approximations based upon the concepts of an average stress state for the constitutive ropes or for every wire. For a statically loaded cable superimposed with a tensile impulse, practically in sudden lifting of a heavy weight, the coupled axial-shearing strain waves in the cable has rarely been studied and explored through analytical approaches. Based on Costello’s force-deformation relationship and elastic wave propagation theory, analysis procedures and results are presented in this paper. Time-dependent coupled axial-torsional displacements and axial-shearing strain waves in a simple straight wire rope, due to a longitudinal impact at one end, are obtained. At the instance of the strike, a pair of coupled primary axial-torsional waves is created and begins to travel in the cable independently with different speed. Meanwhile, a coupling induced secondary torsional wave and an axial wave were observed to travel with the primary axial wave and the primary torsional wave, respectively. Phenomenon such as the traveling, reflections from ends, and intersections of the primary waves as well as the secondary wave are presented. Information provided in this paper would be useful in the study of unexpected overstress and/or fatigue problems.  相似文献   

18.
In order to better understand the geometrical effect on freckle formation in superalloys, samples with uniform increases and decreases in their cross sections were directionally solidified in a Bridgman furnace. In comparison to our conventional knowledge, some new features of freckle appearance have been observed. Freckles could occur at sloped surfaces where the freckle pattern is no longer roughly parallel to the direction of gravity but has the same slope as the surface. At significantly angled surfaces, the freckles appear as discrete flakes, having the shape of tree roots, instead of the long and narrow chains which are usually observed. The component portions having inward sloping surfaces are very freckle prone while those with outward sloping surface are mostly freckle free, although the completely opposite freckling tendency is indicated by the simulated solidification condition. Therefore, as an independent factor the geometrical feature of the components can more effectively affect the freckle formation than the local thermal conditions.  相似文献   

19.
In 1958, Campbell observed that certain artificial pupil displacements could considerably change acuity (measured by viewing gratings) while others had very little effect. He sought an explanation of the small retinal contribution to those effects that was consistent with the Stiles-Crawford effect. This paper suggests an explanation that satisfies that requirement using a waveguide model of the retinal cones. We show that the waveguiding properties of the receptors make them sensitive to obliquely incident exciting waves and this provides some support for the hypothesis that both the Stiles-Crawford and Campbell effects are manifestations of the same underlying waveguide nature of the receptors.  相似文献   

20.
基于爆破产生的P波入射作用下均匀内压薄壁管道的受力特点,采用拟静力分析和叠加原理建立压力管道爆破地震波作用下的应力解析计算模型;基于压力管道材料屈服特性及Tresca屈服理论,建立爆破P波作用下压力管道的振动安全判据计算模型,并结合爆炸影响的直埋压力薄壁管道工程案例进行解析验算。研究结果表明:爆破荷载施加前管道仅受均匀内压,具有初始轴向和切向应力,爆破发生后,管道同时受到内压和爆破地震波P波动荷载作用;管?土界面入射波临界角较小,管道峰值应力随入射角度增大减小,垂直入射时主要发生拉伸破坏,全反射时主要为切向破坏;压力管道安全控制振速随入射角的增大而增大,随运行内压的增大而减小,实际工程中根据管道内压实际情况,选择较小的值作为安全控制值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号