首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815.  相似文献   

2.
A new approach for enhancing the compatibility of liquid crystalline polymers (LCPs) with engineering thermoplastics is developed in this paper. By adding a new type of compatibilizer to poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO)/LCP blends (semi‐interpenetrating LCP network (ILCPN) comprising the liquid crystalline polymer poly‐(ethylene terephthalate)/p‐hydroxybenzoic acid (PET/60PHB) and crosslinked polystyrene), a well‐compatibilized PPO/LCP composite with considerably improved mechanical properties was obtained. Compared with the uncompatibilized PPO/LCP blend, the bending strength and the Izod impact strength of the compatibilized sample with 5% semi‐ILCPN increase more than 2 and 4 times, respectively.  相似文献   

3.
Blends of thermotropic liquid crystalline polymer (LCPA‐950), based on a copolyester of hydroxynapthoic acid and hydroxybenzoic acid with an engineering thermoplastic, poly(phenylene sulfide) (PPS), were prepared using a corotating twin‐screw extruder. Addition of a third component, a functionalized polypropylene (maleic anhydride grafted polypropylene, MA‐PP), that interact with the thermotropic liquid crystalline polymer (TLCP) facilitates the structural development of the TLCP phase by acting as a compatibilizer at the interface. Differential scanning calorimetry and dynamic mechanical thermal analysis results, however, show that there is an interaction between the polymers in the presence of compatibilizer. This means that MA‐PP can be used as a compatibilizer for the PPS/LCP in situ composite system. The viscosity of the compatibilized in situ composite was decreased by the compatibilizer, and this is mainly due to the fibrous structure of the LCP at the high shear rate. The mechanical properties of the ternary blends were increased when a proper amount of MA‐PP was added. This is attributed to fine fibril generation induced by the addition of MA‐PP. Morphological observations determined the significance of the third component in immiscible polymer blends, and an optimum amount of MA‐PP exists for the best mechanical performance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044.  相似文献   

5.
Nanocomposites based on biodegradable poly(butylene succinate) (PBS) and layered silicates were prepared by melt intercalation. Nonmodified montmorillonite (MMT) and MMTs (DA‐M, ODA‐M, ALA‐M, LEA‐M, and HEA‐M) organo‐modified by protonated ammonium cations {i.e., those of dodecylamine, octadecylamine, 12‐aminolauric acid, N‐lauryldiethanolamine, and 1‐[N,N‐bis(2‐hydroxyethyl)amino]‐2‐propanol, respectively} were used as layered silicates. From morphological studies using transmission electron microscopy, DA‐M, ODA‐M, and LEA‐M were found to be dispersed homogeneously in the matrix polymer, whereas some clusters or agglomerated particles were observed for ALA‐M, HEA‐M, and MMT. The enlargement of the difference in the interlayer spacing between the clay and PBS/clay composite, as measured by X‐ray diffraction, had a good correlation with the improvement of the clay dispersion and with the increase in the tensile modulus and the decrease in the tensile strength of the PBS composites with an inorganic concentration of 3 wt %. Dynamic viscoelastic measurements of the PBS/LEA‐M nanocomposite revealed that the storage modulus and glass‐transition temperature increased with the inorganic concentration (3–10 wt %). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1463–1475, 2004  相似文献   

6.
The structural, mechanical, biocompatibility, and biodegradability properties of composite materials formed of poly(butylene succinate) (PBS) and natural fiber (chestnut shell fiber; CSF) were evaluated. Maleic anhydride‐grafted poly(butylene succinate) (PBS‐g‐MA) and treated (crosslinked) CSF (TCSF) were used to improve the mechanical properties of PBS/CSF composites. The results show that PBS‐g‐MA/TCSF composites have superior mechanical properties compared with both pure PBS and PBS/CSF composites, which is attributed to better compatibility between the polymer and TCSF. Normal human foreskin fibroblasts (FBs) were seeded onto these two series of composites to characterize the biocompatibility. FB proliferation, collagen production, and cytotoxicity assays on the PBS/CSF series of composites exhibited superior results compared with those on the PBS‐g‐MA/TCSF composites. PBS‐g‐MA/TCSF was found to be more water resistant than PBS/CSF, and the weight loss of both the composites buried in soil compost indicated that both were biodegradable, especially at high levels of CSF substitution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40730.  相似文献   

7.
Low‐molecular‐weight HOOC‐terminated poly(butylene adipate) prepolymer (PrePBA) and poly(butylene succinate) prepolymer (PrePBS) were synthesized through melt‐condensation polymerization from adipic acid or succinic acid with butanediol. The catalyzed chain extension of these prepolymers was carried out at 180–220°C with 2,2′‐(1,4‐phenylene)‐bis(2‐oxazoline) as a chain extender and p‐toluenesulfonic acid (p‐TSA) as a catalyst. Higher molecular weight polyesters were obtained from the catalyzed chain extension than from the noncatalyzed one. However, an improperly high amount of p‐TSA and a high temperature caused branching or a crosslinking reaction. Under optimal conditions, chain‐extended poly(butylene adipate) (PBA) with a number‐average molecular weight up to 29,600 and poly(butylene succinate) (PBS) with an intrinsic viscosity of 0.82 dL/g were synthesized. The chain‐extended polyesters were characterized by IR spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, wide‐angle X‐ray scattering, and tensile testing. DSC, wide‐angle X‐ray scattering, and thermogravimetric analysis characterization showed that the chain‐extended PBA and PBS had lower melting temperatures and crystallinities and slower crystallization rates and were less thermally stable than PrePBA and PrePBS. This deterioration of their properties was not harmful enough to impair their thermal processing properties and should not prevent them from being used as biodegradable thermoplastics. The tensile strength of the chain‐extended PBS was about 31.05 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
The melt rheology of blends of a liquid crystalline polymer (LCP) and poly(phenylene sulfide) (PPS) and their composites with ferromagnetic Nd‐Fe‐B particles (MQP) was studied. We investigated the effects of LCP concentration, Nd‐Fe‐B particle volume fraction and size, distribution, and shear rate on the rheological properties of these composites. Enthalpy of fusion changes that were observed resulted from the addition of the LCP and Nd‐Fe‐B particles to the polymer blends/composites. The shear rate and frequency dependencies of the materials revealed a viscosity reduction at low (1–3 wt%) and moderate (10–15 wt%) LCP concentrations, and strong effects on the shear‐thinning characteristics of the melt. The suspensions of polydispersed Nd‐Fe‐B particle configurations in PPS that were of lower size ratios gave better processability, which is contradictory to previously reported behavior of suspensions containing spherical particles. Specifically, the compositions with unimodal and a bimodal distribution of Nd‐Fe‐B particles gave the lowest viscosities. The experimental data were correlated with semi‐empirical viscosity model equations of Maron‐Pierce, Krieger‐Dougherty, Eilers, and Thomas and were found to be consistent with the data. The maximum packing fraction, ϕm, of the MQP particles was estimated to be within the range of 0.78 ϕ ≤m ≤ 1.0 through graphical and parametric evaluation methods.  相似文献   

9.
Composites of poly(lactic acid) (PLA) with poly(butylene succinate) (PBS) and microcrystalline cellulose (MCC) as reinforcements of the polymer matrix were prepared by melt blending to improve the brittleness of PLA. As a reactive compatibilizer, a chain extender was used in an attempt to solve the composites’ interfacial problems and to improve their mechanical properties; Fourier transform infrared spectroscopy indicated that the chain extender functionally reacted with PLA, PBS, and MCC mainly through end carboxyls or end hydroxyls. Scanning electron microscopy indicated that the chain extender significantly improved the cohesive interfacial forces. Differential scanning calorimetry and X‐ray diffraction showed that the chain extender inhibited crystallization, and these effects were greater when its percentage was increased. The addition of chain extender improved the tensile and impact strength of the composites, and this improvement was proportional to the chain‐extender percentage. However, the elongation at break decreased when the chain‐extender percentage was over 0.5% because of mild crosslinking within the resin matrix. Rheology indicated that the complex viscosity and storage and loss moduli of the composites increased with increasing amount of chain extender; this indicated that the addition of chain extender improved the melt strength and processability of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44895.  相似文献   

10.
The biopolymer poly‐3‐hydroxybutyrate‐co‐3‐hydroxyvalerate (PHBV) is a promising material for packaging applications but its high brittleness is challenging. To address this issue, PHBV was blended with nine different biopolymers and polymers in order to improve the processing and mechanical properties of the films. Those biopolymers were TPS, PBAT, a blend of PBAT + PLA, a blend of PBAT + PLA + filler, PCL and PBS, and the polymers TPU, PVAc, and EVA. The extruded cast films were analyzed in detail (melting temperature, crystallinity, mechanical properties, permeation properties, and surface topography). A decrease in crystallinity and Young's modulus and an increase in elongation at break and permeability were observed with increasing biopolymer/polymer concentration. In PHBV‐rich blends (≥70 wt % PHBV), the biopolymers/polymers PCL, PBAT, and TPU increased the elongation at break while only slightly increasing the permeability. Larger increases in the permeability were found for the films with PBS, PVAc, and EVA. The films of biopolymer/polymer‐rich blends (with PBAT, TPU, and EVA) had significantly different properties than pure PHBV. A strong effect on the properties was measured assuming that at certain biopolymer/polymer concentrations the coherent PHBV network is disrupted. The interpretation of the permeation values by the Maxwell–Garnett theory confirms the assumption of a phase separation. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46153.  相似文献   

11.
The kinetics of the isothermal crystallization process from the melt of pure poly(butylene succinate)‐co‐(butylene carbonate) (PBS‐co‐BC) and its blends with cellulose acetate butylate (CAB) (10–30 wt%) was studied by differential scanning calorimetry (DSC) and the well‐known Avrami equation. In the blends, the overall crystallization rate of PBS‐co‐BC became slower with increasing CAB content. The equilibrium melting temperature ( ) of PBS‐co‐BC decreased with increasing CAB content, which was similar to that with other miscible crystalline/amorphous polymer blends. The slower crystallization kinetics of PBS‐co‐BC in the blends was explicable in terms of a diluent effect of the CAB component. By application of Turnbull–Fisher kinetic theory for polymer–diluent blend systems, the surface free energy (σe) of pure PBS‐co‐BC and of the blends was obtained, indicating that the blend with CAB resulted in a decrease in the surface free energy of folding of PBS‐co‐BC lamellar crystals. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
The ternary blends of acrylate rubber (ACM), poly(butylene terephthalate) (PBT), and liquid crystalline polymer (LCP) were prepared by varying the amount of LCP but fixing the ratio of ACM and PBT, using melt mixing procedure. The influence of interactions on thermal and dynamic mechanical properties of the blends was investigated over the complete composition range. The techniques applied were Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetry (TG), and dynamic mechanical analysis (DMA). The FTIR spectroscopy analysis showed reduction in the intensity of the peak corresponding to epoxy groups of ACM with increasing heating time at 290°C. This implies that there is a chemical reaction between the epoxy and end groups of PBT and LCP. Glass transition temperature (Tg) and melting temperature (Tm) of the blends were affected depending on the LCP weight percent in the ACM/PBT blend, respectively. This further suggests the strong interfacial interactions between the blend components. In presence of ACM, the nucleating effect of LCP was more pronounced for the PBT phase. The thermogravimetric study showed improved thermal stability for the blends with the increasing LCP content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3904–3912, 2006  相似文献   

13.
Ternary composites were prepared by twin screw extrusion from polybutylene‐succinate (PBS), poly(ethylene‐glycol) (PEG), and cellulose nanocrystals (CNC). The aim of the work is to improve the physical–mechanical properties of PBS by the addition of CNC. A PEG/CNC masterbatch was prepared in order to achieve a good dispersion of hydrophilic CNC in the hydrophobic PBS. The influence of the nanoparticle content on the polymer properties was studied. Regarding the thermal properties fractioned crystallization phenomena of PEG was observed during cooling from the melt. No significant nucleating effect of the nanocellulose was observed. The material containing 4 wt % of CNC showed the best mechanical performance among the nanocomposites studied due to the combination of high modulus and elongation at break with a low detrimental in strength compared with the PBS/PEG blend. Moreover, no nanocellulose agglomerations were observed in its FESEM micrograph. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43302.  相似文献   

14.
Ternary in situ composites based on poly(butylene terephthalate) (PBT), polyamide 66 (PA66), and semixflexible liquid crystalline polymer (LCP) were systematically investigated. The LCP used was an ABA30/PET liquid crystalline copolyesteramide based on 30 mol % of p‐aminobenzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The specimens for thermal and rheological measurements were prepared by batch mixing, while samples for mechanical tests were prepared by injection molding. The results showed that the melting temperatures of the PBT and PA66 phases tend to decrease with increasing LCP addition. They also shifted toward each other due to the compatibilization of the LCP. The torque measurements showed that the ternary blends exhibited an apparent maximum near 2.5–5 wt % LCP. Thereafter, the viscosity of the blends decreased dramatically at higher LCP concentrations. Furthermore, the torque curves versus the PA66 composition showed that the binary PBT/PA66 blends can be classified as negative deviation blends (NDBs). The PBT/PA66/LCP blends containing up to 15 wt % LCP were termed as positive deviation blends (PDBs), while the blends with the LCP ≥25 wt % exhibited an NDB behavior. Finally, the tensile tests showed that the stiffness and tensile strength of ternary in situ composites were generally improved with increasing LCP content. The impact strength of ternary composites initially increased by the LCP addition, then deteriorated when the LCP content was higher than 10 wt %. The correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1975–1988, 2000  相似文献   

15.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
This work studies the effect of processing parameters on mechanical properties and material distribution of co‐injected polymer blends within a complex mold shape. A partially bio‐sourced blend of poly(butylene terephthalate) and poly(trimethylene terephthalate) PTT/PBT was used for the core, with a tough biodegradable blend of poly (butylene succinate) and poly (butylene adipate‐co‐terephthalate) PBS/PBAT for the skin. A ½ factorial design of experiments is used to identify significant processing parameters from skin and core melt temperatures, injection speed and pressure, and mold temperature. Interactions between the processing effects are considered, and the resulting statistical data produced accurate linear models indicating that the co‐injection of the two blends can be controlled. Impact strength of the normally brittle PTT/PBT blend is shown to increase significantly with co‐injection and variations in core to skin volume ratios to have a determining role in the overall impact strength. Scanning electron microscope images were taken of co‐injected tensile samples with the PBS/PBAT skin dissolved displaying variations of mechanical interlocking occurring between the two blends. © 2014 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41278.  相似文献   

17.
In this study, randomly oriented in situ composites based on liquid‐crystalline polymers (LCPs) were prepared by thermal compression moulding. The LCP employed was a semi‐flexible liquid‐crystalline copolyesteramide with 30 mol% of p‐aminobenzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The matrices were poly(butylene terephthalate) (PBT) and polyamide 66 (PA66). The rheological properties, compatibility and morphological structures of these in situ composites were investigated. The results showed that PA66‐LCP and PBT–LCP component pairs of the composites are miscible in the molten state, but partially compatible in the solid state. The ratios of viscosity, λ1 = ηLCPPA66 and λ2 = ηLCPPBT, are all greater than 1.0. However, the melt viscosity of the LCP/PBT and LCP/PA66 blend is much lower than that of PBT and PA66, and it decreases markedly with increasing LCP content. When the LCP/PA66 or LCP/PBT blends are compression moulded, the LCP/PA66 or LCP/PBT melts and flows easily due to their low viscosity, and the LCP phases in the melts deform easily along the flow directions, which are random. It leads to uniformly dispersed LCP micro‐fibres randomly orientation in the thermoplastic matrix due to the compatibility between the blending components. © 2003 Society of Chemical Industry  相似文献   

18.
Photopolymerizable (meth)acrylate networks offer several advantages as biomedical materials including their ability to be formed in situ, fast synthesis rates, and tailorable material properties. The objective of this study was to identify how phosphate buffered saline (PBS) absorption affects the thermomechanical properties of a ternary (meth)acrylate network. Copolymers consisting of 2‐hydroxyethyl (meth)acrylate (2HEMA), benzyl acrylate (BZA), and poly(ethylene glycol) dimethacrylate (PEGDMA; Mn ~ 750) were synthesized under UV with varying weight ratios of 2HEMA to BZA. Each composition underwent dynamic mechanical analysis, tensile strain‐to‐failure testing, Fourier Transform Infrared (FTIR) analysis, and swelling measurements after 24‐h immersion in PBS. Networks with higher 2HEMA concentrations absorbed larger amounts of PBS resulting in a larger decrease in the glass transition temperature. PBS absorption affects the mechanical properties of BZA‐2HEMA‐PEGDMA networks in a manner dependent upon the amount of PBS absorbed into the network. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Poly(butylene terephthalate)‐co‐poly(butylene succinate)‐block‐poly(ethylene glycol) segmented random copolymers, with poly(butylene succinate) (PBS) molar fraction (MPBS) varying from 10 to 60 %, were synthesized through a melt polycondensation process and characterized by means of GPC, NMR, DSC and mechanical testing. The number‐average relative molecular mass of the copolymers was higher than 4 × 104 g mol?1 with polydispersity below 1.9. Sequence distribution analysis on the two types of hard segments by means of 1H NMR revealed that the number‐average sequence length of PBT decreased from 2.80 to 1.23, while that of PBS increased from 1.27 to 4.76 with increasing MPBS. The random distribution of hard segments was also justified because of the degree of randomness around 1.0. Micro‐phase separation structure was verified for the appearance of two glass transition temperatures and two melting points, respectively, in DSC thermograms of most samples. The crystallinity of hard segments changed with the crystallizability controlled by the average sequence length and reached the minimum value at an MPBS of about 50–60 mol%. The results can also be ascribed to the co‐crystallization between two structurally analogous hard segments. Mechanical testing results demonstrated that incorporating a certain amount of PBS moieties (less than 30 mol%), at the expense of a minute depression of the elastic modulus, that higher relative elongation and more flexibility of polymer chain could be expected. Maximum equilibrium water absorption and faster degradation rates were observed on samples with higher MPBS values and lower crystallinity of hard segments were better hydrophilicity of the polymer chain, through in vitro degradation experiments. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
Series of copolyesters based on poly(propylene succinate) (PPS) and poly(butylene succinate) (PBS), which can be produced from biological feedstock, and postconsumer poly(ethylene terephthalate) (PET) were synthesized with the aim of developing sustainable materials, which combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic polyesters were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,3‐propanediol, and 1,4‐butanediol followed by melt reaction with PET in bulk. The content of PET segments in the polymer chains was varied from about 10 to 100 wt % per 100 wt % PPS or PBS. The effect of the introduction of the PET segments on the structure, thermal, physical, and mechanical properties was investigated. The composition and structure of these aliphatic/aromatic copolyesters were determined by NMR spectroscopy. The thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The level of crystallinity was studied by means of DSC and wide‐angle X‐ray scattering. A depression of melting temperature and a reduction of crystallinity of copolyesters with increasing content of PET segments were observed. Consequently, the tensile modulus and strength of copolyesters decreased, and the elongation at break increased with PET content in the range of 10?50 wt %. Thus, depending on PET content, the properties of copolyesters can be tuned ranging from semicrystalline polymers possessing good tensile modulus (380 MPa) and strength (24 MPa) to nearly amorphous polymer of high elongation (~800%), and therefore they may find applications in thermoplastics as well as elastomers or impact modifiers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39815.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号