首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 311 毫秒
1.
为深入理解单晶锗的纳米切削特性,提高纳米锗器件的光学表面质量,使用纳米划痕仪对单晶锗进行多次刻划实验研究,并测得其在刻划过程中的切削力、摩擦因数。利用扫描电子显微镜(SEM)观测沟槽的显微形貌及切屑堆积情况,使用原子力显微镜(AFM)检测其多次刻划过程中的弹性模量及表面粗糙度。结果表明:随着刻划次数的增多,切削力、摩擦因数,表面粗糙度均在逐渐增大,而弹性模量在逐渐变小,这些现象产生的根本原因是在刻划过程中位错的产生及单晶锗晶格遭到破坏引起的能量波动。此外,随着刻划次数的增加,沟槽两侧的切屑堆积越来越明显。  相似文献   

2.
利用纳米压痕仪和原子力显微镜,分别对单晶锗Ge(100)、Ge(110)、Ge(111)3种晶向的表面进行纳米尺度下的摩擦磨损试验。在较大载荷的条件下,3种不同晶面取向的单晶锗磨损情况均呈现沟槽形式,沟槽两侧出现明显的碎屑堆积现象。在划痕试验过程中,单晶锗的磨损性能受晶面取向影响较小;单晶锗的摩擦力随着滑动速度的增加而增加。而且,随着滑动速度的增大,晶体表面出现严重的磨损-沟槽损伤,沟槽两侧碎屑堆积的体积也越来越大,沟槽的深度也逐渐增大;单晶锗在较低载荷下,摩擦力基本保持稳定,但随着载荷的增大,单晶锗的摩擦力呈非线性增长,载荷增大一定值时,晶体表面发生明显的由塑性变形向脆性破坏转变的脆塑转变过渡过程,导致单晶锗表面发生脆性剥离,形成沟槽两侧碎屑堆积。  相似文献   

3.
本文选用 Berkovich 压头,使用纳米压痕仪对单晶锗进行了变载荷纳米刻划试验,利用SEM观测了刻划过程中沟槽表面形貌特征,将划刻过程中材料的去除机制分为延性域、脆塑转变域和脆性域三个阶段,并分析了在各个阶段的力学特征。根据断裂力学理论,以切向力的首次下降作为脆塑转变发生点,由此获得单晶锗脆塑转变的临界载荷及临界深度,并分析了裂纹的产生与扩展过程。对于纳米划刻过程中法向力、切向力、摩擦因数与划刻深度的函数关系进行非线性拟合,由相关系数的计算结果表明,划刻力与划刻深度之间存在强相关性。基于赫兹接触理论计算单晶锗划刻过程中临界弹塑转变深度,其大小为1.33 nm。基于脆朔转变临界载荷,建立了表征单晶锗材料脆塑转变临界深度的表达式,结果表明其脆塑转变临界深度为561 nm。由此对于单晶锗划刻过程中不同阶段确立了量化区分方法。  相似文献   

4.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,采用三维分子动力学(MD)模拟方法研究了单点金刚石压头与单晶锗表面的接触和滑动过程。研究了压头在滑动切削过程中的材料变形、切削力、切屑堆积、表面形貌尺寸。仿真结果表明,随着垂直载荷的增加,切削力、表面形貌尺寸、切屑堆积在接触过程中逐渐增加,且与切削速度无明显关联。切削过程中切削力波动的根本原因是由于单晶锗晶格破坏引起位错的产生和能量波动。为了验证仿真结果的正确性,使用纳米划痕仪对单晶锗进行了纳米切削实验。实验结果与仿真结果一致,验证了MD模型的正确性和有效性。  相似文献   

5.
为深入理解单晶锗纳米切削特性,提高纳米锗器件光学表面质量,采用三维分子动力学(MD)模拟方法研究了单点金刚石压头与单晶锗表面的接触和滑动过程。研究了压头在滑动切削过程中的材料变形、切削力、切屑堆积、表面形貌尺寸。仿真结果表明,随着垂直载荷的增加,切削力、表面形貌尺寸、切屑堆积在接触过程中逐渐增加,且与切削速度无明显关联。切削过程中切削力波动的根本原因是由于单晶锗晶格破坏引起相变的产生和能量波动。为了验证仿真结果的正确性,使用纳米划痕仪对单晶锗进行了纳米切削实验。实验结果与仿真结果一致,验证了MD模型的正确性和有效性。  相似文献   

6.
为了考察单晶锗微纳米尺度脆塑转变机理,利用纳米压痕仪分别对单晶锗(100)、(110)和(111)晶面进行纳米划痕实验,并利用原子力显微镜和扫描电子显微镜对划痕形貌进行观察。通过对划痕深度-距离曲线及划痕形貌进行分析,获取各晶面脆塑转变临界载荷和临界深度。实验结果表明:单晶锗具有强烈的各向异性,(100)、(110)和(111)晶面脆塑转变临界载荷分别为37.6 mN、30.5 mN和32.4 mN,临界深度分别为594.7 nm、512.5 nm和536.6 nm。(100)晶面因其具有最小硬度、最深脆塑转变深度,在划痕过程中塑性去除最多,脆塑转变最晚,而且随着划痕速度的增加,脆塑转变临界深度和临界载荷也相应增加。最后定载荷划痕实验验证了脆塑转变临界载荷和临界深度的正确性。  相似文献   

7.
采用纳米压痕仪对单晶锗进行变载荷纳米划痕实验和恒定载荷纳米划痕实验,分析不同划痕速度和不同载荷对单晶锗切削特性的影响规律;采用原子力显微镜对样品表面进行扫描观测,分析单晶锗微纳米尺度切削加工的材料去除机理。研究结果表明:划痕速度分别为10、20和50μm/s时,单晶锗(100)晶面脆塑转变临界切削力分别为10.2、12.1和9.8 mN,呈现先增大后减少的规律;单晶锗(110)晶面脆塑转变临界切削力分别为9.5、7.7和6.9 mN,呈现随着划痕速度的增大而减少的规律;单晶锗(111)晶面脆塑转变临界切削力分别为8.3、8.5和8.9m N,划痕速度的改变对于切削力的变化基本没有影响;当载荷分别为10、30和50m N时,单晶锗(110)晶面切削力分别为0.3、4.5和12.5 m N。随着划痕速度的增大,单晶锗不同晶面切削特性表现出明显的各向异性;随着载荷的增大,单晶锗切削力也相应增大,切削力的波动范围也越来越大。本研究为分析单晶锗微纳米尺度塑性域切削提供理论基础和数据支持。  相似文献   

8.
利用纳米压痕仪和原子力显微镜对单晶锗(100)晶面进行纳米压痕试验。通过载荷-压深曲线和弹性回复率的变化情况对材料的变形机理以及硬度和弹性模量进行研究。结果表明:单晶锗(100)晶面在不同的压入深度下分别经历了弹性变形、塑性变形和脆性断裂;载荷-压深曲线中出现明显的突进和突退现象,该现象与材料的内部结构发生相变密切相关;单晶锗(100)晶面存在明显的压痕尺寸效应。该材料弹性模量的变化趋势与硬度相一致。  相似文献   

9.
徐亚萌  周海  张杰群  李永康  沈军州 《表面技术》2021,50(4):244-252, 284
目的 分析单晶氧化镓在纳米尺度下的摩擦磨损性能,为金刚石磨料对氧化镓晶体的精密研磨加工提供理论依据.方法 在G200纳米压痕仪上,使用Cube Corner金刚石压头,对单晶氧化镓的(010)和(100)晶面进行了摩擦磨损试验,利用原子力显微镜观测试验后的形貌并测量尺寸.结果 在金刚石以不同速度摩擦单晶氧化镓时,(010)和(100)晶面的划痕宽度与摩擦速度的拟合直线的斜率分别4.05769和7.63462,深度与摩擦速度拟合直线的斜率分别为0.82073和0.79862.以不同载荷摩擦氧化镓时,(010)和(100)晶面的划痕宽度与载荷的拟合直线的斜率分别为47.625和46.750,深度与载荷拟合直线的斜率分别为23.764和31.9546.在多次重复摩擦磨损试验中,摩擦次数从1次增加到10次,划痕的深度从571.22 nm增加到2964.81 nm,划痕宽度从889.34 nm增加到7360 nm.结论 在干摩擦状态下,金刚石压头的摩擦速度对氧化镓的摩擦系数、磨损影响不大.在低载荷下,氧化镓的磨损以塑性变形引起的材料去除为主,在载荷增大到一定值时,磨损转变为脆性材料去除的形式,出现裂纹、剥落和碎屑等,磨损增大.氧化镓(100)晶面由于硬度低、易解理,比(010)晶面更容易磨损.  相似文献   

10.
采用分子动力学方法研究单晶γ-TiAl合金纳米切削过程,通过对单晶γ-TiAl合金的建模、计算和分析,讨论了不同切削深度和切削速度对切削过程的影响,结果发现:在切削过程中,随着切削深度的增大,切屑体积逐渐增大,切屑中原子排列越来越紧密,位错密度也会随之增大;但随着切削速度的增大,位错密度反而会随之降低。在一定的切削深度和切削速度范围内,切削过程中刀具前方都会产生"V"型位错环,工件的温度和势能也都会相应的增大。特别是,当切削速度为400 m/s时,刀具前方的切削表面上未出现原子错排。  相似文献   

11.
李龙  葛培琪 《表面技术》2021,50(12):44-53
目的 进一步理解金刚石线锯加工硬脆晶体材料的去除特性.方法 采用SPH与FEM耦合算法,分析磨粒刻划单晶碳化硅工件过程中的材料去除动态响应,研究不同磨粒压入深度与几何形状条件对磨粒接触力、工件刻划表面形貌与应力分布的影响规律,分析磨粒恒定深度刻划与变深度刻划两种方式下磨粒刻划工件材料的动态响应.结果 磨粒接触力的各方向分量均随刻划时间发生波动,其中x与z轴方向的磨粒接触力随时间的变化趋势相近,平稳刻划时段的磨粒接触力均值拟合方程分别为fx=3.0956h2.7264,fz=11.3813h2.6214.磨粒压入深度是影响刻划过程中工件刻划截面形貌及应力分布的主要因素.相较于圆锥体磨粒,球体磨粒刻划后的工件材料截面形貌更粗糙,但工件材料的变形及损伤层深度更小.在磨粒变深度刻划方式下,随着磨粒压入深度的增加,刻划过程中的工件材料发生了脆塑转变.结论 在保证材料去除率的条件下,需降低磨粒压入深度,以降低磨粒接触力,获得更平整的工件表面刻划形貌与更低的等效应力.  相似文献   

12.
为研究金刚石磨粒刀具切削钢结硬质合金GT35的微观刻划过程与材料去除机理,以单颗粒金刚石刻划实验为研究手段,分析其微观切削力的影响因素及材料的微观去除过程。通过单颗粒金刚石变切深实验发现,切削力与切痕截面积之间呈线性关系,获得的线性比例系数k的估计值可通过单颗粒金刚石等切深实验修正。随后,通过扫描电镜对GT35材料表面切痕形貌进行观测,并用激光共聚焦显微镜对其形貌进行三维建模,研究不同刻划深度下的材料去除模式。结果表明:修正后k(Fx)为0.026 29 N/μm2(R1=0.990 46),k(Fz)为0.046 42 N/μm2(R2=0.994 08); 调质GT35材料在多种切深下均以塑性去除为主,其中切痕底面呈现明显塑性剪切去除状态,切痕边缘位置呈现一定的脆性断裂状态。刀具在切削过程中会在刀尖处形成材料堆叠死区,引起刀具崩刃及磨损,且切痕表面形貌的形成与刀具磨损密切相关。   相似文献   

13.
本文对金刚石薄锯片高速锯切花岗石过程中的锯切力特性进行试验研究,在较宽的参数范围下,通过测量水平力、垂直力和主轴功率来计算切向力和法向力.对锯切力、力比、单颗金刚石承受的平均载荷进行了分析.结果显示,提高锯片的线速度使锯切力、力比和单颗金刚石磨粒承受平均载荷减小;在高速锯切时,锯切力随着锯切深度和进给速度的增加而增加,而进给速度对锯切力的明显影响要小于锯切深度,应选择小切深大进给的工艺参数组合;锯切力比随锯切深度的增加而增加,随进给速度的增加而减小;单颗金刚石磨粒承受平均载荷随着单颗粒金刚石最大未变形切削厚度的增大而线性增大.  相似文献   

14.
采用析因试验法研究断屑槽结构的制备对整体式立铣刀切削性能的影响。选取2把断屑槽分布不同的刀具,以铣刀主轴转速、径向切削深度、每齿进给量为主要因素,建立正交铣削试验。结果表明:断屑槽分布密集的铣刀适合用于加工精度要求不高的零件;断屑槽分布稀释的铣刀,适合用于半精加工要求的工件;对比分析切屑形貌和表面质量,得到用断屑槽分布稀疏的刀具铣削工件时可获得较好的表面质量。  相似文献   

15.
目的 揭示钨合金在超声辅助磨削加工下的材料去除行为。方法 通过超声辅助划擦试验与有限元仿真相结合的方式,分析超声振动作用对材料表面形貌、截面轮廓、划擦力、温度、塑性应变及应变率的影响,探究超声振动作用下的材料去除和表面创成机理。结果 钨合金在划擦过程中发生严重的塑性变形,在划痕两侧出现由耕犁作用而形成的隆起现象。超声辅助划擦形成的划痕表面鳞刺更少且未出现犁沟现象,且划痕深度相较于普通划擦增大14.1%,划痕宽度增大39%。随着划擦深度的增加,试验划擦力与仿真划擦力均线性增大,且仿真值与试验值误差为18.1%,验证了有限元仿真模型的有效性。超声振动作用下的划擦力呈周期性变化特征,使平均划擦力降低了43.2%。此外,仿真结果表明,超声辅助划擦相较于普通划擦,温度最高降低50%,表面塑性应变最高降低20%,超声冲击过程中材料的塑性应变率相较于普通划擦提高1个数量级,分离过程中塑性应变率最大降低2个数量级。结论 超声振动作用可以有效降低划擦过程中的划擦力和划擦区域温度,增大冲击过程中材料的瞬时应变率,改善压头的切屑黏附现象,从而抑制划擦表面鳞刺的生成和犁沟的形成,改善表面质量。此外,超声振动作...  相似文献   

16.
基于LS-DYNA仿真的射流加工参数分析   总被引:1,自引:0,他引:1  
张文超  武美萍  任仲贺 《表面技术》2017,46(10):268-276
目的通过LS-DYNA对磨料射流冲蚀切削进行仿真,研究相关工艺参数对切削参数的影响。方法采用磨料水射流对Al_2O_3陶瓷进行了单点冲蚀仿真和切削仿真研究,其中水和磨料粒子采用SPH方法建模,氧化铝陶瓷工件采用FEM方法建模,并通过SPH-FEM耦合算法,实现射流冲蚀切削过程的仿真。结果分析射流冲蚀过程仿真和切削过程仿真可知,射流加工前期,由于射流中磨粒碰撞与反弹,使壁面成不规则"V"型。初始阶段,切深随计算时间呈线性增加,同时壁面对磨粒产生制约作用,从而使加工处的孔深基本不再增加。由于磨粒在冲蚀处壁面底部的冲蚀作用,使凹坑底部宽度增加并迅速趋于稳定。同时切削仿真与冲蚀仿真也存在一定区别,主要由于切削过程设定了移动速度。结论将仿真结果与实验结果进行比较可知,切削深度随着泵压的增大而成线性增大,切深随磨料流量的增大而增大,随靶距和横移速度的增大而减小。其中切深与磨料流量、靶距、横移速度均为非线性关系,工件最大切深与计算时间不呈线性关系增长。  相似文献   

17.
张红哲  朱晓春  鲍永杰 《表面技术》2022,51(6):327-335, 363
目的 揭示高体积分数SiCp/Al复合材料在超声辅助加工条件下的材料去除机理。方法 采用SiCp/Al复合材料的超声辅助划切试验,探究划切参数变化对超声振幅、划切力及摩擦因数的影响规律,并通过扫描电子显微镜和激光共聚焦显微镜对划痕表面微观形貌进行观察,分析单点金刚石磨粒工具超声辅助划切材料去除的特点。结果 随着划切深度从0.01 mm增加到0.05 mm,电流值逐渐降低,电流值变化量从12 mA增加到25m A,超声振幅逐渐衰减,金刚石压头的轴向冲击作用减弱。划切深度和划切速度的增加使切向挤压切削作用增强,划切力和摩擦因数增大。在材料去除过程中,碳化硅颗粒存在破碎成小颗粒、剪切断裂破碎和拔出等多种去除形式,铝基体出现明显的塑性流动和涂覆现象,并形成切削沟槽外侧堆积。结论 当切削深度和进给速度较小时,材料去除主要是在轴向的高频振动冲击作用下完成,材料表面加工质量较好;当切削深度和进给速度逐渐增大时,材料去除是在轴向冲击破碎和切向挤压切削共同作用下完成,材料表面加工质量逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号