首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用直流电弧等离子体法在氮气和氢气气氛下制备氮化钛纳米颗粒,作为锂氧电池正极催化剂。通过透射电镜(TEM)、X射线衍射(XRD)等对材料进行微观结构表征,结果显示纳米氮化钛呈现立方结构,晶粒尺寸为30.00~60.00 nm,晶化程度良好。氮化钛纳米颗粒作为锂氧电池正极催化剂,电流密度为50 mA/g时,放电比容量达到3 037 mAh/g;在定容500 mAh/g,电流密度为75 mA/g时,电池可稳定循环,能量效率维持在62%左右。此外,充放电循环后电极片的XRD、SEM结果证明锂氧电池的主要反应为过氧化锂的生成与分解。  相似文献   

2.
利用微胶囊技术将酚醛树脂包覆于纳米硅表面,然后在氩气保护下高温炭化,制得硅炭复合负极材料。首先采用4种不同质量比的酚醛树脂与纳米硅制备了硅碳复合材料,得到了不同炭质厚度的硅碳复合材料。通过对其循环性能和倍率性能的比较,发现酚醛树脂与纳米硅的质量比为1∶4,即碳层厚度为4.5 nm时,电化学性能最佳。随后对该种硅碳复合材料的综合电化学性能进行了测试,该材料作为负极制备的锂离子电池具有良好的电化学性能,在电流密度为100 mA g-1的条件下,其首次放电比容量为2 382 mAh g-1,首次充电比容量为1 667 mAh g-1,首次库伦效率为70%。经200次充放电循环后放电比容量为835.6 mAh g-1,库伦效率为99.2%。此外,其倍率性能非常优异,在100、200、500、1 000、2 000及100 mA g-1电流密度下,其平均放电比容量分别为1 716.4、1 231.6、911.7、676.1、339.8及1 326.4 mAh g-1...  相似文献   

3.
用一步水热法制备B3+掺杂Birnessite-MnO2负极材料,使用XRD,Raman,SEM,TEM,XPS和恒电流充放电等手段表征了材料的结构和电化学性能。结果表明,B3+掺杂前后的MnO2都是由二维纳米片组装而成的花球,B3+离子掺杂使纳米片的厚度减小,从而缩短了锂离子和电子在材料内部的传输路径;掺杂适量的B3+离子,使Birnessite-MnO2的电荷转移电阻显著降低。B3+掺杂比例为9%的电极材料,具有最优的电化学性能。在电流密度为100 mA·g-1和1000 mA·g-1的条件下,首次充电比容量分别为855.1 mAh·g-1和599 mAh·g-1,循环100次后仍然保有805 mAh·g-1和510.3 mAh·g-1的可逆比容量,容量保持率分别为94.1%和85.2%。  相似文献   

4.
锂硫电池被认为是新一代低成本、高能量密度的储能系统。但由于硫正极导电性差、穿梭效应严重以及氧化还原反应速率慢, 导致电池容量衰减严重, 倍率性能较差。本研究以柠檬酸钠为碳源制备了具有三维中空结构的多孔碳材料, 并在其骨架上负载钴纳米颗粒后作为硫正极的载体。引入的钴纳米颗粒可有效吸附多硫化物, 提升其转化反应的动力学, 进而明显改善电池的循环和倍率性能。所得的钴掺杂复合硫正极在0.5C (1C=1672 mAh·g-1)的倍率下首圈放电比容量高达1280 mAh·g-1, 在1C的倍率下稳定循环200圈后可保持770 mAh·g-1, 并且具有优异的倍率性能, 即使在10C的大电流密度下仍可稳定循环。  相似文献   

5.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

6.
金属锂负极是锂电池极具发展潜力的高能二次电池负极材料,但是锂枝晶生长、界面不稳定、循环稳定性差和体积膨胀大等问题限制了锂负极的应用。针对枝晶生长和体积膨胀的问题,本工作通过模板法构筑了一种具有较大比表面积的半限域式层次孔炭(HPC)材料,HPC电极材料的高比表面积可降低局部电流密度,丰富的孔道结构可将锂限制在其内部沉积,从而达到抑制枝晶生长和缓解体积膨胀的目的。Li‖HPC电池在电流密度为1.0 mA·cm-2、沉积电量为1.0 mAh·cm-2条件下可以循环超过250周次,其库仑效率保持在97.6%。采用此负极与磷酸铁锂(LiFePO4)正极匹配制备的Li@HPC‖LiFePO4全电池,在0.5 C下循环100周次后的正极放电比容量为93.6 mAh·g-1,较相同条件下的Li@Cu‖LiFePO4全电池(60.8 mAh·g-1)提升了32.8 mAh·g-1。  相似文献   

7.
研究碳纤维编织布用于锂离子电池三维一体化正极的可行性,对三种经过热处理碳布的石墨化程度进行定性分析和定量计算。以锂金属作为对电极,石墨化的碳布电极在0.1~0.5 V的电压下首次放电比容量分别为83.6,94.5mAh·g-1和115.2 mAh·g-1,经过50周次循环充放电后比容量分别为55.0,80.0 mAh·g-1和88.0 mAh·g-1左右。将石墨化的碳布负载LiFePO4后,电极的首次放电比容量分别为73.2,109.5 mAh·g-1和130.2 mAh·g-1。对于石墨化程度为76.02%的碳布,经过50周次循环充放电后比容量稳定在90.0 mAh·g-1左右,综合电化学性能较好,更适合用于锂离子电池的一体化柔性正极。通过建立LiFePO4颗粒与碳纤维之间相互作用的力学模型,探讨一体化正极的力学性能、电学性能和电化学性能之间的关系。将碳布用于锂离子电池一体化正极,可以简化锂离子电池的常规生产过程,革新其生产方式。  相似文献   

8.
利用挤出式3D打印技术制备纺织物结构的自支撑柔性锂离子电池电极的新方法,并采用高浓度的聚偏氟乙烯(PVDF)作为黏度调节剂、碳纳米管(CNT)作为导电剂、磷酸铁锂或钛酸锂作为电极活性材料,配制了具有可打印性的"墨水",其表观黏度接近105Pa·s,该"墨水"表现出明显的剪切变稀行为,同时存储模量平台值也高达105Pa,其优异的流变学性质对于打印和固化过程十分有利。电化学测试结果表明,两种打印电极具有稳定且十分匹配的充放电比容量,因此由二者组装的软包袋装全电池也具有高达~108mAh·g-1的放电比容量(50mA·g-1),弯曲后,在同样的电流密度下其放电比容量约为111mAh·g-1。  相似文献   

9.
锂硫电池(LSBs)因能量密度高、原料储量丰富、环境友好等优点引起了广泛关注。然而,多硫化物的穿梭效应、反应过程中较大的体积膨胀以及硫较差的电子电导率等缺点极大地限制了其发展。本研究设计了一种SnS2纳米颗粒与ZIF-8衍生的花状二维多孔碳纳米片/硫复合材料(ZCN-SnS2-S),并研究了其作为锂硫电池正极的电化学性能。其独特的二维花状多孔结构不仅有效缓解了反应过程中的体积膨胀,而且为Li+和电子的传输提供了快速通道,杂原子N也促进了对多硫化物的吸附作用。并且负载的极性SnS2纳米颗粒极大地增强了对多硫化物的吸附,从而使ZCN-SnS2-S复合材料表现出优异的电化学性能。在0.2C(1C=1675 mA·g-1)电流密度下, ZCN-SnS2-S电极循环100次后仍能保持948 mAh·g-1的高可逆比容量,容量保持率为83.7%。即使在2C的高电流密度下循环300圈,ZCN-SnS2-S电极仍具有546 mA...  相似文献   

10.
杨尚泽  梁江  冯斌  刘鹏  杨现锋  刘其城 《功能材料》2021,52(3):3130-3134
硅颗粒的低负载量及其与石墨基体的弱相互作用严重制约了硅/石墨负极材料的商业化应用。本研究通过浓硫酸和高锰酸钾的氧化处理增大石墨基体的比表面积,利用十二烷基苯磺酸钠作为表面活性剂,改善纳米硅与氧化石墨湿法混合的均匀性,采用柠檬酸催化蔗糖碳源的水解,以便热解后在复合材料表面形成完整的炭包覆层。XRD与SEM分析表明,改进的炭包覆工艺可促进氧化石墨的还原,获得高石墨化度的碳硅复合材料,并实现硅颗粒在石墨基体中的均匀分散。上述协同效应使炭包覆的纳米硅/石墨负极材料在100 mA·g-1的电流密度下循环100圈后比容量仍能稳定在400 mAh·g-1左右,在提升比容量的基础上,有效抑制了硅在循环过程中的体积膨胀。  相似文献   

11.
The large‐scale commercial application of lithium–oxygen batteries (LOBs) is overwhelmed by the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) associated with insoluble and insulated Li2O2. Herein, an elaborate design on a highly catalytic LOBs cathode constructed by N‐doped carbon nanotubes (CNT) with in situ encapsulated Co2P and Ru nanoparticles is reported. The homogeneously dispersed Co2P and Ru catalysts can effectively modulate the formation and decomposition behavior of Li2O2 during discharge/charge processes, ameliorating the electronically insulating property of Li2O2 and constructing a homogenous low‐impedance Li2O2/catalyst interface. Compared with Co/CNT and Ru/CNT electrodes, the Co2P/Ru/CNT electrode delivers much higher oxygen reduction triggering onset potential and higher ORR and OER peak current and integral areas, showing greatly improved ORR/OER kinetics due to the synergistic effects of Co2P and Ru. Li–O2 cells based on the Ru/Co2P/CNT electrode demonstrate improved ORR/OER overpotential of 0.75 V, excellent rate capability of 12 800 mAh g?1 at 1 A g?1, and superior cycle stability for more than 185 cycles under a restricted capacity of 1000 mAh g?1 at 100 mA g?1. This work paves an exciting avenue for the design and construction of bifunctional catalytic cathodes by coupling metal phosphides with other active components in LOBs.  相似文献   

12.
Bifunctional electrocatalysis for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) constitutes the bottleneck of various sustainable energy devices and systems like rechargeable metal–air batteries. Emerging catalyst materials are strongly requested toward superior electrocatalytic activities and practical applications. In this study, transition metal hydroxysulfides are presented as bifunctional OER/ORR electrocatalysts for Zn–air batteries. By simply immersing Co‐based hydroxide precursor into solution with high‐concentration S2?, transition metal hydroxides convert to hydroxysulfides with excellent morphology preservation at room temperature. The as‐obtained Co‐based metal hydroxysulfides are with high intrinsic reactivity and electrical conductivity. The electron structure of the active sites is adjusted by anion modulation. The potential for 10 mA cm?2 OER current density is 1.588 V versus reversible hydrogen electrode (RHE), and the ORR half‐wave potential is 0.721 V versus RHE, with a potential gap of 0.867 V for bifunctional oxygen electrocatalysis. The Co3FeS1.5(OH)6 hydroxysulfides are employed in the air electrode for a rechargeable Zn–air battery with a small overpotential of 0.86 V at 20.0 mA cm?2, a high specific capacity of 898 mAh g?1, and a long cycling life, which is much better than Pt and Ir‐based electrocatalyst in Zn–air batteries.  相似文献   

13.
The main drawbacks of today's state-of-the-art lithium–air (Li–air) batteries are their low energy efficiency and limited cycle life due to the lack of earth-abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3P) nanoparticles with an exceptional activity—ORR and OER current densities of 7.21 and 6.85 mA cm−2 at 2.0 and 4.2 V versus Li/Li+, respectively—in an oxygen-saturated non-aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance—Tafel slopes of 35 and 38 mV dec−1 for ORR and OER, respectively—resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li–air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.  相似文献   

14.
作为电池的重要组成部分,电极材料直接影响电池的能量密度。电极材料在制作过程中往往会添加粘结剂以稳定极片结构,但粘结剂的加入会降低电极材料的比容量,影响其离子迁移速率。通过在经水热反应刻蚀的钛箔/网上原位生长二氧化钛(TiO 2)得到无粘结剂TiO 2/Ti纳米线阵列电极,并系统地研究不同钛基底及水热反应温度对TiO 2/Ti纳米线阵列电极物理性能和电化学性能的影响。结果表明,不同钛基底及水热反应温度均对生长的TiO 2纳米线的形貌和电化学性能有重要影响。其中通过220℃水热反应生长在钛网(0.15 mm)上的TiO 2纳米线呈蛛网状,具有较大的比表面积,属于锐钛矿型TiO 2,储钠过程主要由赝电容效应控制,且具有优秀的电化学性能:首周放电比容量为986 mAh g^-1,库伦效率为21.7%;随后放电比容量逐渐稳定在240 mAh g^-1左右;循环200周后放电比容量仍能达到228 mAh g^-1,库伦效率稳定在99.3%左右;即使在3200 mA g^-1的超大电流密度下,放电比容量仍能达到152 mAh g^-1。无粘结剂电极材料极大可以有限地提升电极材料的比容量,对未来高能量密度电池体系的设计具有一定的理论意义和参考价值。  相似文献   

15.
No-precious bifunctional catalysts with high electrochemical activities and stability were crucial to properties of rechargeable zinc–air batteries. Herein, LaNiO3 modified with Ag nanoparticles (Ag/LaNiO3) was prepared by the co-synthesis method and evaluated as the bifunctional oxygen catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Compared with LaNiO3, Ag/LaNiO3 demonstrated the enhanced catalytic activity towards ORR/OER as well as higher limited current density and lower onset potential. Moreover, the potential gap between ORR potential (at −3 mA·cm−2) and OER potential (at 5 mA·cm−2) was 1.16 V. The maximum power density of the primary zinc–air battery with Ag/LaNiO3 catalyst achieved 60 mW·cm−2. Furthermore, rechargeable zinc–air batteries operated reversible charge–discharge cycles for 150 cycles without noticeable performance deterioration, which showed its excellent bifunctional activity and cycling stability as oxygen electrocatalyst for rechargeable zinc–air batteries. These results indicated that Ag/LaNiO3 prepared by the co-synthesis method was a promising bifunctional catalyst for rechargeable zinc–air batteries.  相似文献   

16.
用直流电弧等离子体法制备金属钼纳米粉体再使其与赤磷发生固相反应,用两步法制备出磷化钼纳米粒子。使用X射线衍射(XRD)和透射电镜(TEM)等手段表征磷化钼纳米粒子的结构并进行了电化学性能测试。结果表明,MoP纳米粒子呈球状,粒径为20~50 nm;在电流密度为100 mA/g的条件下MoP纳米粒子负极材料的首次放电比容量达到746 mAh/g,50次循环后放电比容量为241.9 mAh/g;电流密度为2000 mA/g时放电比容量为99.90 mAh/g,电流密度恢复到100 mA/g其放电比容量仍然保持247.60 mAh/g。用作锂离子电池的负极材料,MoP纳米粒子具有优异的稳定性和可逆性。  相似文献   

17.
采用氧化石墨烯(grapheneoxide,GO)作为制备石墨烯的前驱体,通过液相还原自组装过程与硫纳米颗粒进行复合,获得了高性能的还原氧化石墨烯/硫(r GO/S)复合正极材料。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、拉曼光谱、X射线光电子能谱分析(XPS)等对材料微观形貌与结构进行表征。结果表明:硫纳米颗粒均匀分布在石墨烯片层间,并且硫纳米颗粒被石墨烯片层有效地封装,硫在35-r GO/S复合物中的质量分数高达83.6%。该35-r GO/S复合正极在0.2C电流密度下初始放电容量可达1197.3mAh·g^-1,经过200次循环后容量仍保持在730mAh·g^-1左右,表现出优异的循环性能。  相似文献   

18.
Al-Mamun  Mohammad  Yin  Huajie  Liu  Porun  Su  Xintai  Zhang  Haimin  Yang  Huagui  Wang  Dan  Tang  Zhiyong  Wang  Yun  Zhao  Huijun 《Nano Research》2017,10(10):3522-3533
The activity and durability of electrocatalysts are important factors in their practical applications,such as electrocatalytic oxygen evolution reactions (OERs)used in water splitting cells and metal-air batteries.In this study,a novel electrocatalyst,comprising few-layered graphitic carbon (~5 atomic layers) encapsulated heazlewoodite (Ni3S2@C) nanoparticles (NPs),was designed and synthesized using a one-step solid phase pyrolysis method.In the OER test,the Ni3S2@C catalyst exhibited an overpotential of 298 mV at a current density of 10 mA·cm-2,a Tafel slope of 51.3 mV·dec-1,and charge transfer resistance of 22.0 Ω,which were better than those of benchmark RuO2 and most nickelsulfide-based catalysts previously reported.This improved performance was ascribed to the high electronic conductivity of the graphitic carbon encapsulating layers.Moreover,the encapsulation of graphitic carbon layers provided superb stability without noticeable oxidation or depletion of Ni3S2 NPs within the nanocomposite.Therefore,the strategy introduced in this work can benefit the development of highly stable metal sulfide electrocatalysts for energy conversion and storage applications,without sacrificing electrocatalytic activity.  相似文献   

19.
The oxygen evolution reaction (OER) has significant effects on the water-splitting process and rechargeable metal-air batteries; however, the sluggish reaction kinetics caused by the four-electron transfer process for transition metal catalysts hinder large-scale commercialization in highly efficient electrochemical energy conversion devices. Herein, a magnetic heating-assisted enhancement design for low-cost carbonized wood with high OER activity is proposed, in which Ni nanoparticles are encapsulated in amorphous NiFe hydroxide nanosheets (a-NiFe@Ni-CW) via direct calcination and electroplating. The introduction of amorphous NiFe hydroxide nanosheets optimizes the electronic structure of a-NiFe@Ni-CW, accelerating electron transfer and reducing the energy barrier in the OER. More importantly, the Ni nanoparticles located on carbonized wood can function as magnetic heating centers under the effect of an alternating current (AC) magnetic field, further promoting the adsorption of reaction intermediates. Consequently, a-NiFe@Ni-CW demonstrated an overpotential of 268 mV at 100 mA cm−2 for the OER under an AC magnetic field, which is superior to that of most reported transition metal catalysts. Starting with sustainable and abundant wood, this work provides a reference for highly effective and low-cost electrocatalyst design with the assistance of a magnetic field.  相似文献   

20.
Metal–organic frameworks (MOFs) and MOF‐derived materials have recently attracted considerable interest as alternatives to noble‐metal electrocatalysts. Herein, the rational design and synthesis of a new class of Co@N‐C materials (C‐MOF‐C2‐T) from a pair of enantiotopic chiral 3D MOFs by pyrolysis at temperature T is reported. The newly developed C‐MOF‐C2‐900 with a unique 3D hierarchical rodlike structure, consisting of homogeneously distributed cobalt nanoparticles encapsulated by partially graphitized N‐doped carbon rings along the rod length, exhibits higher electrocatalytic activities for oxygen reduction and oxygen evolution reactions (ORR and OER) than that of commercial Pt/C and RuO2, respectively. Primary Zn–air batteries based on C‐MOF‐900 for the oxygen reduction reaction (ORR) operated at a discharge potential of 1.30 V with a specific capacity of 741 mA h gZn–1 under 10 mA cm–2. Rechargeable Zn–air batteries based on C‐MOF‐C2‐900 as an ORR and OER bifunctional catalyst exhibit initial charge and discharge potentials at 1.81 and 1.28 V (2 mA cm–2), along with an excellent cycling stability with no increase in polarization even after 120 h – outperform their counterparts based on noble‐metal‐based air electrodes. The resultant rechargeable Zn–air batteries are used to efficiently power electrochemical water‐splitting systems, demonstrating promising potential as integrated green energy systems for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号