首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A polymeric precursor method was used to synthesis PbTiO3 amorphous thin film processed at low temperature. The luminescence spectra of PbTiO3 amorphous thin films at room temperature revealed an intense single‐emission band in the visible region. The visible emission band was found to be dependent on the thermal treatment history. Photoluminescence properties versus different annealing temperatures were investigated. The experimental results (XRD, AFM, PL) indicate that the nature of photoluminescence (PL) must be related to the disordered structure of PbTiO3 amorphous thin films. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A series of 2′,7′‐diarylspiro(cyclopropane‐1,9′‐fluorene) derivatives are efficiently synthesized and characterized to determine the reason for the “green‐light” emission of these compounds. These compounds exhibit bright‐violet to blue photoluminescence (PL) (λPLmax = 353–419 nm) with excellent PL quantum efficiencies (ΦPL = 83–100 %) in solution and show high thermal stabilities (Td = 267–474 °C). The variation of the optical properties of these molecules in the solid state depends on the different stacking modes of these compounds containing different substituents, which are revealed by crystallographic analysis. CH…π hydrogen bonds instead of intermolecular π–π interactions act as the driving force between adjacent fluorenes, even though a very small dialkyl group (cyclopropane) is introduced at the C‐9 position of fluorene. The crosslike molecular stacking efficiently reduces the energy transfer between the herring‐like aggregates and therefore results in the absence of a “green‐light” emission tail. In order to determine the cause of the “green‐light” emission tails, the fluorescence spectra of the films annealed in N2 or in air are recorded. Broad green‐light emission tails were observed for the films annealed in air, which might be caused by fluorenone defects generated during processing or during the course of the photophysical analysis by reaction with residual oxygen.  相似文献   

3.
The detailed measurement and analysis of the delayed emission from poly(vinylcarbazole) (PVK) and poly(N‐ethyl‐2‐vinyl‐carbazole) (P2VK) thin films is described. PVK has rapidly become a “polymer of choice” for hosting phosphorescent dopants in PLEDs, especially blue emitters. In this respect it is important to have a full understanding of the triplet properties of this host. It is concluded that in films, the electronic 0–0 peak energy of PVK phosphorescence is found at 2.88 eV (14 K). With an increase of temperature, >44 K, increasing emission from new long lived, lower energy species, previously ascribed to “trap states” in the literature, is observed. Increasing temperature enables thermally assisted triplet exciton hopping to these trap states. Critically it is shown that some of these triplet trap species are ground state triplet dimers in origin for both PVK (2.46 eV) and P2VK (2.1 eV), and not all of them are of excimer nature as previously thought. These species can quench the emission of blue heavy metal complexes doped in PVK and drastically effect performance over lifetime if the dimer formation increases over time and at elevated operating temperature. It is therefore concluded that PVK might not be such an ideal host material for blue phosphorescent emitters.  相似文献   

4.
We report on the photoluminescent (PL) properties of ZnO thin films grown on SiO2/Si(100) substrates using low pressure metal-organic chemical vapor deposition. The growth temperature of the films was as low as 400°C. From the PL spectra of the films at 10–300 K, strong PL peaks due to free and bound excitons were observed. The origin of the near bandedge emission peaks was investigated measuring temperature-dependent PL spectra. In addition, the Zn O films demonstrated a stimulated emission peak at room temperature. Upon illumination with an excitation density of 1 MW/cm2, a strong, sharp peak was observed at 3.181 eV.  相似文献   

5.
The temperature dependence of luminescence from [Cu(dnbp)(DPEPhos)]BF4 (dnbp = 2,9‐di‐n‐butylphenanthroline, DPEPhos = bis[2‐(diphenylphosphino)phenyl]ether) in a poly(methyl methacrylate) (PMMA) film indicates the presence of long‐life green emission arising from two thermally equilibrated charge transfer (CT) excited states and one non‐equilibrated triplet ligand center (3LC) excited state. At room temperature, the lower triplet CT state is found to be the predominantly populated excited state, and the zero‐zero energy of this state is found to be 2.72 eV from the onset of its emission at 80 K. The tunable emission maximum of [Cu(dnbp)(DPEPhos)]BF4 in various hosts with different triplet energies is explained in terms of the multiple triplet energy levels of this complex in amorphous films. Using the high triplet energy charge transport material as a host and an exciton‐blocking layer (EBL), a [Cu(dnbp)(DPEPhos)]BF4 based organic light‐emitting diode (OLED) achieves a high external quantum efficiency (EQE) of 15.0%, which is comparable to values for similar devices based on Ir(ppy)3 and FIrpic. The photoluminescence (PL) and electroluminescence (EL) performance of green emissive [Cu(μI)dppb]2 (dppb = 1,2‐bis[diphenylphosphino]benzene) in organic semiconductor films confirmed its 3CT state with a zero‐zero energy of 2.76 eV as the predominant population excited state.  相似文献   

6.
Narrow‐band photoluminescence (PL) together with high quantum efficiency from organic molecules is essential for high‐color‐purity emitters. Supramolecular assemblies like J‐aggregates are promising materials due to their narrow PL signal with full‐width at half maximum <20 nm. However, their microcrystalline nature and coherent exciton migration results in strong nonradiative exciton recombination at the grain boundaries that diminish the photoluminescence quantum yield (PLQY), and possibilities for improving the crystallinity by tuning the growth mechanism are limited. Here, two distinct routes to grow different J‐aggregate morphologies like platelets and lamellar crystals with improved crystallinity by surface‐guided molecular assembly are demonstrated, thereby suppressing nonradiative decay and improving PLQY. Both platelets and lamellar crystals show similar absorbance at room temperature. However, temperature‐dependent PL studies show sevenfold (twofold) higher PLQY for lamellar films compared to platelets at 6 K (300 K). Using time‐resolved PL spectroscopy, different nonradiative decay pathways are identified. The dependence of exciton diffusion on energetic disorder and nonradiative decay is discussed. The results suggest that the difference in domain size and order gives rise to significantly enhanced radiative decay from lamellar films as compared to platelets or films formed by spin‐coating.  相似文献   

7.
在Si(111)衬底上利用等离子体辅助分子束外延(P-MBE)生长氧化锌(ZnO)薄膜,研究了在不同衬底生长温度下(350~750℃)制备的ZnO薄膜的结构和光学性质.随着衬底温度的升高,样品的X射线及光致发光的半高宽度都是先变小后变大,衬底温度为550℃样品的结构及光学性质都比较好,这表明550℃为在Si(111)衬底上生长ZnO薄膜的最佳衬底温度;同时,我们还通过550℃样品的变温光致发光谱(81~300K)研究了ZnO薄膜室温紫外发光峰的来源,证明其来源于自由激子发射.  相似文献   

8.
Gold nanoclusters (Au NCs) stand for a new type of fluorescent nanomaterials with outstanding optical properties due to their discrete electronic energy and direct electron transition. However, relative low quantum yield (QY) of Au NCs in aqueous or solid state has limited their photofunctional applications. To improve the fluorescent performances of Au NCs and find an effective approach for the fabrication of Au NCs‐based films, in this work, Au NCs are localized onto 2D layered double hydroxides (LDHs) nanosheets via a layer‐by‐layer assembly process; the as‐fabricated (Au NCs/LDH)n ultrathin films (UTFs) show an ordered and dense immobilization of Au NCs. The localization and confinement effects imposed by LDH nanosheets induce significantly increased emissive Au(I) units as confirmed by X‐ray photoelectron spectroscopy and periodic density functional theoretical simulation, which further results in promoted QY (from 2.69% to 14.11%) and prolonged fluorescence lifetime (from 1.84 µs to 14.67 µs). Moreover, the ordered (Au NCs/LDH)n UTFs exhibit well‐defined temperature‐dependent photoluminescence (PL) and electrochemiluminescence (ECL) responses. Therefore, this work supplies a facile strategy to achieve the immobilization of Au NCs and obtain Au NCs‐based thin films with high luminescent properties, which have potential applications in PL and ECL temperature sensors.  相似文献   

9.
王彩凤 《光电子.激光》2010,(12):1805-1808
用脉冲激光沉积法(PLD)在多孔硅(PS)衬底上生长ZnS薄膜,分别在300℃、400℃和500℃下真空退火。用X射线衍射(XRD)和扫描电子显微镜(SEM)研究了退火对ZnS薄膜的晶体结构和表面形貌的影响,并测量了ZnS/PS复合体系的光致发光(PL)谱和异质结的I-V特性曲线。研究表明,ZnS薄膜仅在28.5°附近存在着(111)方向的高度取向生长,由此判断薄膜是单晶立方结构的-βZnS。随着退火温度的升高,-βZnS的(111)衍射峰强度逐渐增大,且ZnS薄膜表面变得更加均匀致密,说明高温退火可以有效地促进晶粒的结合并改善结晶质量。ZnS/PS复合体系的PL谱中,随着退火温度升高,ZnS薄膜的自激活发光强度增大,而PS的发光强度减小,说明退火处理更有利于ZnS薄膜的发光。根据三基色叠加的原理,ZnS的蓝、绿光与PS的红光相叠加,ZnS/PS体系可以发射出较强的白光。但过高的退火温度会影响整个ZnS/PS体系的白光发射。ZnS/PS异质结的I-V特性曲线呈现出整流特性,且随着退火温度的升高其正向电流增加。  相似文献   

10.
采用双离子束溅射法制备了SiNx薄膜,用XRD、XPS、FTIR等对薄膜的结构进行了表征,并且分析了样品的光致发光(PL)特性。发现在225nm的紫外光激发下,样品在室温下可发射高强度的可见光,峰位分别位于470nm、520nm和620nm,用能隙态模型讨论了可能的发光机理。  相似文献   

11.
We report a study of a series of heavy rare earth tris‐8‐hydroxyquinolines (REQ3s), using UV‐visible absorption spectroscopy, infrared absorption spectroscopy, and photoluminescence (PL) measurements. We show that the heavy REQ3s are all chemically similar to each other and to aluminium tris‐8‐hydroxyquinoline, at least in terms of the ligand behavior. Characteristic rare earth 4f–4f luminescence is only observed for ErQ3 and YbQ3 due to the relatively low energy of the ligand triplet state. We show that a triplet transfer mechanism cannot be responsible for the observed Yb 4f–4f luminescence observed in YbQ3. Instead, an internal chemiluminescent process is shown to be energetically favorable. The thin film PL spectra of all the heavy REQ3s are dominated by triplet emission, except for that of ErQ3, for which transfer to the Er3+ ion represents an efficient alternative. The PL spectra of powder samples, which would be expected to consist of approximately equal amounts of both isomers, are dominated by singlet emission. This is in contrast to the results from the thin films, and suggests that the isomer which predominates in the thin films has a much higher intersystem crossing rate than the other isomer.  相似文献   

12.
The correlation between morphology and charge‐carrier mobility in the vertical direction in thin films of poly(2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV) is investigated by a combination of X‐ray reflectivity (XRR), field‐emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), fluorescence optical microscopy (FOM), photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE), as well as time‐of‐flight (TOF) and transient electroluminescence (TrEL) techniques. The mobility is about two orders of magnitude greater for drop‐cast films than for their spin‐cast counterparts. Drop‐casting in the presence of a vertical static electric field (E‐casting) results in films with an additional increase in mobility of about one order of magnitude. While PL and PLE spectra vary with the method of film preparation, there is no correlation between emission spectra and charge‐carrier mobility. Our XRR measurements on spin‐cast films indicate layering along the film depth while no such structure is found in drop‐cast or E‐cast films, whereas FESEM examination indicates that nanodomains within drop‐cast films are eliminated in the E‐cast case. These observations indicate that carrier transport is influenced by structure on two different length scales. The low mobility observed in spin‐cast films is a direct result of a global layered structure with characteristic thickness of ca. 4 nm: in the absence of this layered structure, drop‐cast films with inherent nanoscale heterogeneities (ca. 20 nm in size) exhibit much better hole mobility. Elimination of nanodomains via electric‐field alignment results in further improved charge mobility.  相似文献   

13.
Indium-doped zinc oxide (ZnO:In) films were prepared in an Ar:O2 plasma by reactive magnetron sputtering. The x-ray diffraction (XRD) patterns presented the crystal structures of ZnO:In films, while transmission spectra and photoluminescence (PL) spectra showed the changed band gap and the visible emission from defects, as compared to the PL spectra of undoped ZnO films. It was concluded that the increase of substrate temperature enhanced the crystal quality of ZnO:In films; the incorporation of In made the c-axis constant of the samples larger than that of undoped ZnO films; the blue emission was due to the transition from an unknown donor level by indium doping to the valance band; and the orange-green emission originated from acceptor defects (OZn) formed in the O-rich plasma. Meanwhile, the current- voltage characteristics and persistent photoconductivity phenomenon also could be explained by the increased acceptor defects (OZn) that formed when the substrate temperature was increased.  相似文献   

14.
The green emission of poly(9,9′′‐dioctylfluorenyl‐2,7′′‐diyl), end‐capped by polyhedral oligomeric silsequioxanes, (PFO‐POSS) has been investigated by photoluminescence (PL) and photoexcitation (PE), gel permeation chromatography (GPC), and transmission Fourier transform infrared (FTIR) spectroscopy. The green emission is closely correlated with thermal oxidation degradation and crosslinking of the polymer and is enhanced by annealing at elevated temperatures. The green‐to‐blue emission intensity ratio, used to assess the emission properties of thin (90 nm) films, was 3.70, 4.35, and 1.54 for an air‐annealed film, its insoluble residue (crosslinked), and a film cast from its soluble portion, respectively. For thick (5–6 μm) film, the ratios are 13.33, 13.33, and 0.79, respectively. However, FTIR spectroscopy of thick films leads to the conclusion that the carbonyl‐to‐aromatic ring concentration ratio are 0.018, 0.015, and 0.032, respectively. Focusing on the recast films, the green emission is relatively low while the carbonyl concentration is relatively high. This suggests that the energy traps at crosslinked chains play an important role in green emission. It is likely that the crosslinking enhances the excitation energy migration and energy transfer to the defects by hindering chain segment twisting.  相似文献   

15.
Evidence for a correlation between the dynamics of emissive non‐geminate charge recombination within organic photovoltaic (OPV) blend films and the photocurrent generation efficiency of the corresponding blend‐based solar cells is presented. Two model OPV systems that consist of binary blends of electron acceptor N′‐bis(1‐ethylpropyl)‐3,4,9,10‐perylene tetracarboxy diimide (PDI) with either poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) or poly(9,9‐dioctylindenofluorene‐co‐benzothiadiazole) (PIF8BT) as electron donor are studied. For the F8BT:PDI and PIF8BT:PDI devices photocurrent generation efficiency is shown to be related to the PDI crystallinity. In contrast to the F8BT:PDI system, thermal annealing of the PIF8BT:PDI layer at 90 °C has a positive impact on the photocurrent generation efficiency and yields a corresponding increase in PL quenching. The devices of both blends have a strongly reduced photocurrent on higher temperature annealing at 120 °C. Delayed luminescence spectroscopy suggests that the improved efficiency of photocurrent generation for the 90 °C annealed PIF8BT:PDI layer is a result of optimized transport of the photogenerated charge‐carriers as well as of enhanced PL quenching due to the maintenance of optimized polymer/PDI interfaces. The studies propose that charge transport in the blend films can be indirectly monitored from the recombination dynamics of free carriers that cause the delayed luminescence. For the F8BT:PDI and PIF8BT:PDI blend films these dynamics are best described by a power‐law decay function and are found to be temperature dependent.  相似文献   

16.
High-quality ZnO thin films were prepared by metal-organic chemical vapor deposition (MOCVD) on a sapphire (a-Al2O3) substrate. The synthesis of ZnO films was performed over a substrate temperature of 400–700°C and at chamber pressures of 0.1–10 torr. The structural and optical properties of ZnO films were investigated in terms of deposition conditions, such as substrate temperature, working pressure, and the ratio of Zn precursor (Diethylzinc (DEZn)) to oxygen. The ZnO films, preferentially oriented to 34.42° diffraction because of the (002) plane, were obtained under processing conditions of 700°C and 3 torr. This film shows a full-width at half-maximum (FWHM) of 0.4–0.6°. The results of photoluminescence (PL) spectroscopy also show a strong near band-edge emission at 3.36 eV at 10 K as well as a very weak emission at deep levels around 2.5 eV at room temperature. In addition, we are interested in the introduction of ZnO buffer-layer growth by the sputtering process to reduce lattice mismatch stress. This paper addresses how to advance the crystalline and optical properties of film. The ZnO film grown with the aid of a buffer layer shows a FWHM of 0.06–0.1° in the x-ray diffraction (XRD) pattern. This result indicates that crystalline properties were highly improved by the ZnO buffer layers. The PL spectroscopy data of ZnO film also shows a strong near band-edge emission and very weak deep-level emission similar to films synthesized without a buffer layer. Accordingly, synthesized ZnO films with buffer layers indicate fairly good optical properties and low defect density as well as excellent crystallinity.  相似文献   

17.
The photophysical properties, i.e., the fluorescence and phosphorescence of a series of blue light‐emitting poly(ladder‐type phenylene)s have been investigated employing continuous‐wave (cw) and time‐resolved photoluminescence (PL) spectroscopy in solid state and dilute solution. The chemically well‐defined polymers vary from two to five bridged phenyl‐rings per monomer unit bearing aryl‐ or alkyl‐substitution at the bridge‐head carbon atoms. It has been found that the fluorescence energy of the polymers and of the corresponding monomers deviates from a simple 1/N dependence, if the number N of bridged‐phenylene rings is increased beyond a certain limit. Time‐resolved fluorescence spectroscopy on thin films showed that apart from the blue fluorescence of the polymers an additional lower energy emission feature exists, which cannot be assigned to keto‐defects and which seems to be an inherent solid state property of this class of materials. Delayed time‐resolved photoluminescence spectroscopy allowed the detection of phosphorescence energies and lifetimes for all investigated polymers. Photoinduced absorption spectroscopy on thin films showed that the triplet‐triplet absorption red‐shifts with increasing monomer length but reaches a constant value for polymers with N ≥ 4. Amplification of light via amplified spontaneous emission (ASE) from thin film slab waveguide structures could be demonstrated for all ladder‐type polymers but the onset threshold value for ASE varies significantly with the polymer structure.  相似文献   

18.
Growth of In0.52Al0.48As epilayers on InP (100) substrates by molecular beam epitaxy at different silicon doping levels is carried out. The doped samples show an inverted S-shaped dependence of the PL peak energy variation with the temperature which weakens at high doping levels due to a possible reduction in the donor binding energy. There is a reduction in both the AlAs-like and InAs-like longitudinal-optic (LO) phonon frequencies and a broadening of the LO phonon line shape as the doping level is increased. The PL intensity also showed in increasing degrees at higher doping levels, a temperature dependence which is characteristic of disordered and amorphous materials.  相似文献   

19.
Photoluminescence (PL) characteristics of GaN/lnGaN/GaN single quantum wells (QWs) and an InGaN/GaN single heterojunction were studied using continuous wave (CW) and pulsed photoluminescence in both edge and surface emitting configurations. Samples were grown on c-plane sapphire substrates by atmospheric pressure metalorganic chemical vapor deposition (MOCVD). Room temperature and 77K PL measurements were performed using a CW Ar-ion laser (305 nm) and a frequency tripled (280 nm), pulsed, mode-locked Ti: sapphire laser. CW PL emission spectra from the quantum wells (24, 30, 80Å) were all blue shifted with respect to the reference sample. The difference (i. e., the blue shift) between the measured value of peak emission energy from the QW and the band-edge emission from the reference sample was attributed to quantum size effects, and to strain arising due to a significant lattice mismatch between InGaN and GaN. In addition, stimulated emission was observed from an InGaN/GaN single heterojunction in the edge and surface emitting configu-ration at 77K. The narrowing of emission spectra, the nonlinear dependence of output emission intensity on input power density, and the observation of a strongly polarized output are presented.  相似文献   

20.
GaxIn1-x P layers with x ≈ 0.5 have been grown by atmospheric pressure organometallic vapor phase epitaxy on GaAs substrates with 10 micron wide, [110]-oriented grooves produced photolithographically on the surface. The [110] steps and the misorientation produced at the edges of the grooves have been found to have important effects on the formation of the Cu-Pt ordered structure (ordering on {111} planes) in the GaInP layers during growth. In this work, the groove shape is demonstrated to be critically important. For the optimum groove shape, with a maximum angle to the (001) surface of between 10 and 16°, single domains of the (-111) and (1-11) variants of the Cu-Pt ordered structure are formed on the two sides of the groove. Shallow (≤0.25 μm deep) grooves, with maximum angles of <10°, are less effective. Within the large domains on each side of the groove, small domains of the other variant are observed. The boundary between the two domains is seen to wander laterally by a micron or more during growth, due to the change in shape of the groove during growth. For deep (1.5 μm) grooves, with maximum angles to the (001) plane of 35°, only a single variant is formed on each side of the groove. However, the domains are small, dispersed in a disordered matrix. For substrates with deep grooves on a GaAs substrate misoriented by 9° toward the [-110] direction, an interesting and useful pattern is produced. One half of the groove is a single domain which shrinks in size as the growth proceeds. The other half of the groove, where the misorientation is larger, is disordered. Thus, every groove contains large (>1 μm2 cross-sectional area and several mm long) regions of highly ordered and completely disordered material separated by no more than a few microns. This allows a direct determination of the effect of ordering on the bandgap of the material using cathodoluminescence (CL) spectroscopy. The 10K photoluminescence (PL) consists of three distinct peaks at 1.94, 1.88, and 1.84 eV. High resolution CL images reveal that the peaks come from different regions of the sample. The high energy peak comes from the disordered material and the low energy peak comes from the large ordered domains. Electron microprobe measurements of the solid composition demonstrate that the shift in emission energy is not due to changes in solid composition. This is the firstdirect verification that ordering causes a reduction in bandgap of any III/V alloy. Decreasing the Ga0.5In0.5P growth rate from the normal 2.0 to 0.5 μ/h is found to enhance ordering in layers grown on planar GaAs substrates. Transmission electron diffraction results show that the domain size also increases significantly. For material grown on exactly (001)-oriented substrates, a pronounced [001] streaking of the superlattice spots is observed. This is correlated with the presence of a dense pattern of fine lines lying in the (001) plane in the transmission electron micrographs. The PL of this highly ordered material consists of a single peak that shifts to higher energy by > 110 meV as the excitation intensity is increased by several orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号