首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
为了分析煤储层特征参数对CO_(2)注入煤层提高煤层气采收率(CO_(2)-ECBM)工程的影响,基于二元气体的非等温竞争吸附和渗流扩散特征,建立CO_(2)-ECBM的流-固-热耦合模型,进行CO_(2)-ECBM工程数值模拟研究,分析初始储层温度、渗透率和压力对煤层渗透率、CH;生产速率和CO_(2)封存速率的影响。结果表明:CH;的生产速率在抽采初始阶段下降迅速,之后随着抽采时间的增加,生产速率减幅越小;CO_(2)封存速率可以被分成3个阶段:初始迅速减小,中期几乎保持稳定,后期缓慢减小;CO_(2)未影响区域,煤层渗透率的变化规律是先略微减小然后不断增加,CO_(2)影响区域,煤层渗透率迅速下降;相同条件下,储层的CH;生产速率和CO_(2)封存速率与初始储层温度成反比,与初始储层渗透率和初始储层压力成正比。  相似文献   

2.
利用含瓦斯煤热流固耦合三轴伺服渗流装置,开展了不同压力条件下CO_2气体在煤层中的渗流特性试验,并探讨了煤岩渗透速率对应力变化响应的敏感性。研究结果表明,在相同轴压不同围压条件下,随着孔隙压力的增大,CO_2渗透速率增大;围压越大,CO_2渗透速率越小;在相同围压不同轴压条件下,随着轴压的增大,CO_2渗透速率随之减小。孔隙压力越大,应力敏感性系数负向增大,煤样对应力的敏感性越好。在不同轴压与围压条件下,随着应力的升高,应力敏感性系数逐渐降低,即应力越高,煤样渗透速率对应力的敏感性越差。  相似文献   

3.
吸附气体对突出煤渗流特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
姜德义  袁曦  陈结  蒋翔  范金洋  任松  李林 《煤炭学报》2015,40(9):2091-2096
煤层中瓦斯渗流特性不仅受地应力、煤孔隙结构等因素的影响,还因气体吸附而发生变化。以重庆市万盛区某煤矿突出煤层原煤为实验对象,在有效轴向应力和有效围压为1 MPa条件下,利用自制的三轴渗流试验机研究突出煤吸附二氧化碳、甲烷气体对渗流特性的影响。结果表明:1突出原煤吸附-渗流过程具有明显的阶段特征,煤体变形经历了初始快速变形阶段、缓慢变形发展阶段、变形稳定阶段、收缩变形阶段和渗流稳定阶段;2气体压力越大,煤体膨胀变形越大,相同气体压力下,煤体吸附二氧化碳变形增量大于吸附甲烷变形增量;3随着气体压力的增大,气体渗流速度逐渐增大,呈显著的指数函数关系,突出煤渗透率先减小后增大,具有明显的阶段性。  相似文献   

4.
为准确表征开发过程中欠饱和煤储层孔隙度变化,以临界解吸压力为界,在煤基质收缩及有效应力耦合作用下建立煤储层孔隙度模型,以此分析了排采过程中孔隙度随孔隙压力的变化规律。研究结果表明,开发过程中孔隙度变化一般经历4个阶段:排水降压段、缓慢降压段、弥补反弹段、快速增长段,分别与生产过程中气、水产出变化阶段相对应;孔隙度变化程度主要受控于反弹压力点与临界解吸压力点之间的配置关系,反弹压力越接近临界解吸压力,基质收缩强度越大,孔隙度反弹能力越强;在生产过程形成的压降漏斗内,各点孔隙度变化可以反映该点储层压力的变化,扩大压降漏斗内孔隙度反弹压力面和等孔隙度压力面,有利于提高煤层气井产能。  相似文献   

5.
白俊杰  侯朝阳 《煤》2018,(4):24-27
注气(N_2、CO_2)驱替技术越来越多地应用到煤层气的开发当中,气体在煤层中的扩散快慢直接影响驱替效果。为了解CH_4、N_2、CO_2在煤层中的解吸扩散特性,利用实验研究了不同压力、不同时间段内它们在煤中的扩散系数变化情况。结果表明:在不同时间段内,N_2、CH_4、CO_2在煤中的扩散系数都是随气体压力的增加略微降低,但降低不是很明显;在相同气体压力下,N_2、CH_4、CO_2在煤中的扩散系数都随时间的增加而减小,并且在相同气体压力下,CO_2在煤中的扩散系数最大,CH_4次之,N_2最小。  相似文献   

6.
为研究静态应力条件下的煤岩体矿物组分与裂隙产状在其损伤破坏历程中的分布规律和发育机制,综合运用X射线衍射仪(XRD)和电子显微镜(SEM)探究煤岩体内固体骨架的矿物组分和表面裂隙形态,利用离散节理网络模型(DFN)构建可视化"块体-合成体"三维对照模型,并对比煤岩块体"载荷-位移"曲线完成合成体单轴压缩模拟分析。结果表明:因煤层和围岩体试样矿物组分以高岭土、石英为主且随衍射角度变化组分含量不同,表体裂隙形态排列复杂且附着天然缺陷(孔洞、裂隙),表明沉积作用形成的煤岩体具有非均质和多向异性特征;煤岩实体在单轴压力作用时宏观应力行为均历经"压密-弹性-塑性-破坏"4个阶段;将合成体内随机分布、大小各异的盘状裂隙依据相互交叉、联通规模,划分为Ⅰ单一型、Ⅱ切块型和Ⅲ贯穿型3类,单轴压缩作用初期Ⅰ型裂隙通过减小自身孔隙容积、密度或间距度过煤岩体受力压密阶段,块体塑性区呈现大范围的单一裂隙剪切劣化;Ⅱ型裂隙内含三角、四边和多边裂隙随应力作用相互挤压、交叉摩擦发生块间剪切滑移进入弹性阶段并维护自身结构稳定;随压应力继续增大,Ⅲ型裂隙互相贯通、连接后发生大范围张拉损伤并进入不可恢复的塑性段,最终导致块体破坏失稳。  相似文献   

7.
为了研究瓦斯抽采过程中煤体渗透率的变化规律,推导建立了考虑吸附膨胀应力的含瓦斯煤的孔隙率模型和含瓦斯煤的渗透率演化模型,通过三轴应力条件下的含瓦斯煤渗透率实验对该模型进行了验证,两者吻合度较高。基于该模型研究了在孔隙压力卸载状态下煤的弹性模量、初始孔隙率、吸附性常数、吸附膨胀应力系数等对渗透率的影响规律。结果表明:在气体卸压过程中,煤的弹性模量越小,其渗透率的变化率波动就相对越大;煤的初始孔隙率越小,其孔隙率的变化率越大,进而渗透率的变化率也就越大;煤的吸附膨胀应力系数对渗透率的影响作用与Langmuir吸附常数类似,其值越大则气体解吸所引起的渗透率增大就越强,渗透率下降就越缓慢。  相似文献   

8.
为探究瓦斯抽采钻孔孔周破碎煤岩体中瓦斯-水相对渗透特性,利用自主研发的破碎岩体气液耦合渗透试验系统,采用稳态渗透法开展了瓦斯-水耦合渗透试验,得到了煤样渗透参数随渗透压和轴向压力的变化特征,并分析了渗透参数间的相互影响关系。结果表明:承压破碎煤岩体孔隙度随轴向压力的增加呈快速下降、缓慢下降和趋于稳定的阶段性特征;随着含水饱和度的增加,煤样气体相对渗透率快速下降,水相对渗透率线性上升,气体和水相对渗透率表现出竞争关系,且气体渗透率对于含水饱和度的敏感程度更高;气体和水的总渗透率随有效应力的增加而减小,服从指数函数关系,有效应力会影响破碎煤岩体孔隙结构的变形过程,随孔隙度的减小,气体有效渗透率降低,相对渗透率增加;渗透压对于水和气体相对渗透率的影响可分为气体占优阶段、等渗阶段和水占优阶段,临界渗透压取值范围为0.4~0.6 MPa。  相似文献   

9.
深部不可采煤层的CO_2地质封存作为CCS技术的重要方向,有望成为温室气体减排与煤层气高效开发的可行性手段。近年来随着我国CO_2-ECBM工程探索逐渐向深部煤层进军,超临界CO_2与煤岩的相互作用受到越来越多的关注。煤层的CO_2地质封存能力主要取决于煤岩的吸附能力,煤岩超临界CO_2吸附作用的研究成为CO_2-ECBM的重点研究领域之一。本文梳理了大量煤岩超临界CO_2吸附实验结果与模型,指出超临界CO_2密度变化是过剩吸附曲线异常的原因,论述了水分、显微煤岩组分、煤阶、温度与孔隙尺寸对超临界CO_2吸附能力的影响机理;总结了煤中超临界CO_2吸附速率在不同压力、温度、粒径及煤阶中的变化规律;在前人关于不同孔径孔隙中的不同吸附行为研究的基础上,凝练了煤中超临界CO_2的孔隙选择效应模式,认为超临界CO_2的非凝聚性与高密度特征是形成煤岩多尺度孔隙中不同吸附行为的原因;分析指出了今后煤岩超临界CO_2吸附作用研究可能的发展方向。本文旨在评述煤岩的超临界CO_2吸附的相关研究进展,为深化认识煤岩超临界CO_2吸附机理与表征模型提供基础和启示。  相似文献   

10.
《煤矿安全》2016,(7):177-181
煤层渗透特性是目前业内研究的热点和难点问题之一。通过对前人的研究方法和研究结果进行比较,着重对地应力、瓦斯压力和温度3个影响因素进行总结,并得到如下结论:煤样的渗透率变化与煤岩体内孔隙、裂隙的变化情况一致;瓦斯压力对煤样渗透率的影响存在有效应力主导阶段、煤基质吸附-解吸变形主导阶段和滑脱效应主导阶段;在较低的温度下,煤样渗透率随温度升高而降低;而较高温度下,随温度升高而升高。通过对上述影响因素研究现状的总结和思考,指出了今后亟待解决的科学问题和研究方向。  相似文献   

11.
为了实现ECBM实验研究和数值模拟结合分析,基于实验室应力条件的渗透率模型,建立了煤孔隙裂隙介质系统的CO2驱替煤层CH4的数值模型。开展了不同CO2注入压力下煤样尺度的二氧化碳驱替煤层气的数值模拟。结果表明:CO2的注入压力越大,注入后CO2从煤样末端流出所需时间越小;CO2的注入会引起煤的渗透率减小,注入压力较小时渗透率变化分为三个阶段,包括有效应力影响的阶段、CH4压力不变的阶段和CO2吸附影响阶段,但是当注入压力较大时则不存在CH4压力不变的阶段;注入压力增大,CH4产出量在注入CO2后的一定时间内有很大提高,然后在注气后期,CH4产出量反而较小。上述结果对指导室内开展ECBM实验和分析ECBM室内实验的结果具有指导意义。  相似文献   

12.
CO2煤层地质封存可以减少温室气体排放,同时可提高煤层气的采收率。注气开采过程涉及到温度场(T),多相多成分流场(H)和应力场(M)之间的相互耦合。煤层割理裂隙渗透率是影响CO2地质封存和煤层气开采率的重要参数。煤岩渗透性的关键性因素裂隙张开度同时受控于法向应力和剪胀效应。考虑基质和割理的共同作用,提出基于组合裂隙三向平板简化的各向异性渗透率模型。在此基础上,建立了注入CO2提高煤层气采收率的三维数值模型并利用耦合软件TOUGH-FLAC进行求解。模拟结果表明,气体注进采出的孔压作用会引起煤层膨胀或收缩。与孔压,吸附应力/应变以及温度相比,剪胀对裂隙渗透率的影响不明显。在注采过程中,渗透率表现出明显的各向异性,注入井附近的异向渗透率甚至可达30倍差异。此外,注气初期应适当控压,井口附近的高压损伤将带来不必要的裂隙气体泄漏,导致注气失败。  相似文献   

13.
深部高瓦斯工作面煤体采动扩容特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
应用数值模拟、实验室实验、现场实测和理论分析的综合研究方法,对深部高瓦斯工作面煤体采动扩容特性进行了系统研究。研究发现含瓦斯煤体应力峰值前出现扩容现象,煤体初始瓦斯压力对扩容有显著影响,初始瓦斯压力越大,煤体发生扩容的应力临界值越小,瓦斯压力越易发生突变。高瓦斯工作面煤体扩容阶段,瓦斯压力具有采动应力响应特征,采动应力作用下煤体扩容力学行为打破了瓦斯解吸和吸附的平衡,瓦斯压力呈现先降低后升高的瞬变演化。基于深部开采高瓦斯工作面煤体扩容力学特征,考虑煤体瓦斯解吸吸附特性,依据理想气体定律,构建了含瓦斯煤扩容阶段瓦斯压力采动应力响应的数值力学模型,揭示了煤体扩容区瓦斯压力不稳定易突变失稳的内在机理。深部开采煤层在采动应力作用下的扩容是煤与瓦斯动力灾害发生的必要条件,也是灾害防控的主要可控因素,通过降低煤层采动应力集中以控制煤体扩容,可有效消除煤与瓦斯动力灾变隐患。  相似文献   

14.
煤层处置二氧化碳模拟实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了研究CO2在煤层中的储存能力与置换驱替CH4特性,利用沁水煤田潞安矿区3号煤层大尺寸(100 mm×100 mm×200 mm)煤样,在确定应力约束条件下,开展了CO2在煤体中的吸附特性与其在含甲烷煤试样中的驱替实验,并对含甲烷煤和不含甲烷煤中CO2的储存特性做了对比分析。结果表明:在模拟真实地应力(围压=轴压=8 MPa)条件与0.5 MPa注入压力作用下,180min内试验煤样中储存CO2量达11.03 L,CO2在测试煤体中的渗透率随其吸附量的增加而减小;在既定的地应力条件和近于14.93 cm3/g煤层平均瓦斯含量条件下,当CO2注入压力由0.5 MPa提高到1.0 MPa时,CO2在试验煤体中的储存量可提高93.00%、储存率提高13.50%、相应CH4的解吸量提高了18.13%;在实验初期,CH4的解吸量高于CO2的吸附量,随注入过程的持续,煤体中CH4的解吸量逐渐趋于平缓且远小于CO2的吸附量;同等条件下,含CH4煤比不含CH4煤可多储存59.29%的CO2,储存率提高了12.51%。  相似文献   

15.
深部煤层井组注入CO2开采煤层气技术主要通过CO2的强吸附效应,能够置换出更多的CH4,同时实现CO2的长期大量的埋藏。通过试验分析,柿庄北地区CO2的吸附能力是CH4的2倍,随着解吸压力的降低,CH4比CO2会更快的解吸,能够有效的置换CH4。CO2的注入引起煤储层物性的变化,主要是由于CO2的吸附和解吸引起的基质膨胀与收缩效应造成渗透率的变化,并且呈现随着压力的降低先降低后迅速增加的变化规律。基于渗透率变化规律,应用模拟软件建立地质模型和数值模型,分析了CO2注入量、频率和注入方式对井组或单井的产量、采收率和CO2埋藏量的影响。模拟结果认为注入量10~15 t/d,连续注入90 d,关井90 d,反复实施2 a后,可以实现采收率的提高。通过现场试验验证,该区3号煤层吸附CO2的能力在8 t/d,井组的埋藏潜力约为12 616 t。  相似文献   

16.
申建  秦勇  张春杰  胡秋嘉  陈伟 《煤炭学报》2016,41(1):156-161
探讨CO2注入深煤层提高煤层气采收率可行性对于解放我国丰富深部煤层气资源具有积极意义。分析了沁水盆地不同深度条件下储层参数的变化规律,开展了CO2注入煤层增产效应的数值模拟研究。结果显示,煤储层参数随埋深呈非线性变化且各参数显著变化深度具有较好的对应性,存在500~600 m,950~1 150 m两个关键转折界限,据此将煤层划分为浅部、过渡、深部三带。随着埋深增加煤储层强非均质向均质转换,即所有参数在浅部较为离散而深部收敛。通过不同深度煤层的CO2注入生产效果模拟显示,注入CO2后煤层气采收率均得到不同幅度提高;注入CO2提高煤层气采收率效果由过渡带、浅部、深部逐步递减;注入时间越早和越长,提高采收率效果越显著;要实现深部煤层气采收率显著增加必须保证一定的CO2注入量;深部CO2封存优势显著。  相似文献   

17.
段品佳  张超  屈长龙  王芝银 《煤炭学报》2014,39(Z2):447-451
储层压裂是煤层气工程中提高采收率的主要措施之一,但同时受压裂液侵入和煤粉的影响会对储层造成伤害,从而抑制了煤岩储层渗透率的有效提高。基于孔隙压力变化对煤岩应力状态改变的力学分析,研究分析了压裂过程中压裂液对裂隙面附近煤岩的作用机理;通过煤岩应力状态变化的研究,确定了煤层气压裂过程引起裂隙面附近煤岩发生不同破坏特征的破坏模式;并根据压裂对煤层气工程产生的负效应,进一步给出了煤层气排采过程中的降压速率上限值确定方法。研究分析表明,压裂对煤层气储层改造具有明显的两面性,对煤层气的长期高效排采具有很大的局限性,必须严格控制压裂施工工艺及排采降压规律,才能达到有效提高排采效率的目的。  相似文献   

18.
超临界CO_2驱替煤层CH_4装置及试验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
梁卫国  张倍宁  韩俊杰  杨栋 《煤炭学报》2014,39(8):1511-1520
自主研发了MCQ-Ⅱ型大试件(100mm×100mm×200mm)超临界CO2驱替煤层CH4试验装置,该装置不仅能够保障试验过程中CO2始终处于超临界状态,而且可测量煤体吸附过程中的体积膨胀。借助本装置对同一温度不同体积应力条件下的超临界CO2的渗透性及其驱替CH4效果进行了试验研究。试验结果表明:在50℃、恒定体积应力为48~60MPa条件下,超临界CO2的渗透率与注入渗透压呈正相关关系,与体积应力呈负相关关系。超临界CO2在煤体中的渗透特性远远高于其在常态条件下的渗透性。试验同时发现,超临界CO2在煤体中的吸附量与孔隙压力及体积应力均呈正相关,在48和60MPa的体积应力下,单位体积的煤体分别可累计吸附10.82~17.52体积和16.12~20.40体积的CO2;试验还测得了不同条件下煤体吸附CH4、超临界CO2及超临界CO2驱替煤体CH4过程中,煤体体积膨胀百分比。在超临界CO2驱替CH4试验中,2号焦煤煤样试件中注入气体体积(包括CH4,CO2)均小于1号弱黏煤煤样,但是两煤样中的CO2/CH4置换比及CO2最终储存率相当,分别为4.01/4.16,20.05%/20.09%。  相似文献   

19.
刘磊 《煤炭工程》2020,52(4):124-129
在我国煤层气的开发中普遍面临煤层具有的低压、低渗、低饱和度等自然属性问题,针对此问题,提出利用液态气体伴注辅助水力压裂改造煤层技术。文章阐述了液氮伴注技术提高煤层临界解吸压力机理和CO2驱替煤层甲烷机理,结合芦岭煤矿地面煤层气工业试验,进行了液氮伴注辅助水利压裂、液态CO2驱替煤层甲烷试验以及效果分析。结果表明:注入液氮后氮气分子会挤占煤层甲烷分子的空间,为甲烷气体提供外部能量,同时能够降低煤层甲烷分子分压,提高其临界解吸压力,促使煤层更快的解吸出甲烷气体,提高产气量,试验2号井,达到产气峰值3145.2m^3/d仅用190d,稳产期平均产气量为1400m^3/d;CO2具有的强吸附性能够与吸附态煤层甲烷发生置换作用,促使煤层甲烷更快的由吸附态变为游离态,实现煤层甲烷大量解吸的效果,同时CO2在等压条件下还能够降低游离甲烷分压,进一步提高产气量,试验3号井,实际/理论临界解吸压力比值为3.29,达到产气峰值3351.9m^3/d仅用了124d,稳产期平均产气量为800m^3/d。对比可知:液氮伴注技术优势明显,且在后续煤矿工作面回采过程中无新的CO2突出风险。  相似文献   

20.
煤层在地表无通道时的瓦斯压力计算   总被引:1,自引:0,他引:1  
针对煤层在地表无露头或出口的情况,根据热力学理论和弹塑性理论,提出了考虑煤层温度和地应力梯度变化的煤层瓦斯压力的计算方法。从鱼田堡矿井煤层瓦斯压力的理论计算和实测结果表明,煤层温度和地应力梯度变化对煤层瓦斯压力有较大影响。对于深部开采煤层和高温矿井,应充分考虑地温和地应力梯度的影响。按此法计算将使所确定的煤层瓦斯压力值更准确。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号