首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TiO2 nanotubes promoted with Pt metal were prepared and tested to be the photocatalytic dehydrogenation catalyst in neat ethanol for producing H2 gas (C2H5OHC3CHO +H2). It was found that the ability to produce H2, the liquid phase product distribution and the catlyst stability of these promoted nano catalysts all depended on the Pt loading and catalyst preparation procedure. These Pt/TiO2 catalysts with TiO2 nanotubes washed with diluted H2SO4 solution produced 1, 2-diethoxy ethane (acetal) as the major liquid phase product, while over those washed with diluted HCl solution or H2O, acetaldehyde was the major liquid phase product.  相似文献   

2.
The effect of the nature of the support of a Co catalyst on the synthesis of hydrocarbons from CO, H2, and C2H4 was studied in this work. It was found that the introduction of ethylene into synthesis gas resulted in an increase in the yield of liquid hydrocarbons. In this case, the conversion of C2H4 was complete and the degree of its involvement into the synthesis of C5+ hydrocarbons depended on the concentration of this component in the starting mixture and the nature of the support. Specific features of the adsorption of CO and C2H4 on the used Co catalysts were determined using a temperature-programmed desorption method.  相似文献   

3.
In this study, degradation aspects and kinetics of organics in a decontamination process were considered in the degradation experiments of advanced oxidation processes (AOP),i.e., UV, UV/H2O, and UV/H2O,/TiO2 systems. In the oxalic acid degradation with different H2O2 concentrations, it was found that oxalic acid was degraded with the first order reaction and the highest degradation rate was observed at 0.1 M of hydrogen peroxide. Degradation rate of oxalic acid was much higher than that of citric acid, irrespective of degradation methods, assuming that degradation aspects are related to chemical structures. Of methods, the TiO2 mediated photocatalysis showed the highest rate constant for oxalic acid and citric acid degradation. It was clearly showed that advanced oxidation processes were effective means to degrade recalcitrant organic compounds existing in a decontamination process.  相似文献   

4.
5.
The concept of “waste-to-wealth” is spreading awareness to prevent global warming and recycle the restrictive resources. To contribute towards sustainable development, hydrogen energy is obtained from syngas (CO and H2) generated from waste gasification, followed by CO oxidation and CO2 removal. In H2 generation, it is key to produce more purified H2 from syngas using heterogeneous catalysts. In this respect, we prepared Pt/Al2O3 catalyst with nanoporous structure using precipitation method, and compared its catalytic activity with commercial alumina (Degussa). Based on the results of XRD and TEM, it was found that metal particles did not aggregate on the alumina surface and showed high dispersion. Optimum condition for CO conversion was 1.5 wt% Pt loaded on Al2O3 support, and pure hydrogen was obtained after removal of CO2 gas.  相似文献   

6.
The electrochemical promotion of the CO2 hydrogenation reaction on porous Rh catalyst–electrodes deposited on Y2O3-stabilized-ZrO2 (or YSZ), an O2− conductor, was investigated under atmospheric total pressure and at temperatures 346–477 °C, combined with kinetic measurements in the temperature range 328–391 °C. Under these conditions CO2 was transformed to CH4 and CO. The CH4 formation rate increased by up to 2.7 times with increasing Rh catalyst potential (electrophobic behavior) while the CO formation rate was increased by up to 1.7 times with decreasing catalyst potential (electrophilic behavior). The observed rate changes were non-faradaic, exceeding the corresponding pumping rate of oxygen ions by up to approximately 210 and 125 times for the CH4 and CO formation reactions, respectively. The observed electrochemical promotion behavior is attributed to the induced, with increasing catalyst potential, preferential formation on the Rh surface of electron donor hydrogenated carbonylic species leading to formation of CH4 and to the decreasing coverage of more electron acceptor carbonylic species resulting in CO formation.  相似文献   

7.
Nanoporous silica membrane without any pinholes and cracks was synthesized by organic templating method. The tetrapropylammoniumbromide (TPABr)-templating silica sols were coated on tubular alumina composite support ( γ-Al2O3/ α-Al2O3 composite) by dip coating and then heat-treated at 550 °C. By using the prepared TPABr templating silica/alumina composite membrane, adsorption and membrane transport experiments were performed on the CO2/N2, CO2/H2 and CH4/H2 systems. Adsorption and permeation by using single gas and binary mixtures were measured in order to examine the transport mechanism in the membrane. In the single gas systems, adsorption characteristics on the α-Al2O3 support and nanoporous unsupport (TPABr templating SiO2/ γ-Al2O3 composite layer without α-Al2O3 support) were investigated at 20–40 °C conditions and 0.0–1.0 atm pressure range. The experimental adsorption equilibrium was well fitted with Langmuir or/and Langmuir-Freundlich isotherm models. The α-Al2O3 support had a little adsorption capacity compared to the unsupport which had relatively larger adsorption capacity for CO2 and CH4. While the adsorption rates in the unsupport showed in the order of H2> CO2> N2> CH4 at low pressure range, the permeate flux in the membrane was in the order of H2≫N2> CH4> CO2. Separation properties of the unsupport could be confirmed by the separation experiments of adsorbable/non-adsorbable mixed gases, such as CO2/H2 and CH4/H2 systems. Although light and non-adsorbable molecules, such as H2, showed the highest permeation in the single gas permeate experiments, heavier and strongly adsorbable molecules, such as CO2 and CH4, showed a higher separation factor (CO2/H2=5-7, CH4/H2=4-9). These results might be caused by the surface diffusion or/and blocking effects of adsorbed molecules in the unsupport. And these results could be explained by surface diffusion. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

8.

Abstract  

The highly porous metal organic framework MOF-5 was loaded with the metal–organic compound [Pd(C3H5)(C5H5)] by metal–organic chemical vapor deposition (MOCVD) method. The inclusion compound [Pd(C3H5)(C5H5)]@MOF-5 was characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It was found that the host lattice of MOF-5 remained intact upon precursor insertion. The –C3H5 ligand in the precursor is easier to lose due to the interaction between palladium and the benzenedicarboxylate linker in MOF-5, providing a possible explanation for the irreversibility of the precursor adsorption. Pd nanoparticles of about 2–5 nm in size was formed inside the cavities of MOF-5 by hydrogenolysis of the inclusion compound [Pd(C3H5)(C5H5)]@MOF-5 at room temperature. N2 sorption of the obtained material confirmed that high surface area was retained. In the Suzuki coupling reaction the Pd@MOF-5 materials showed a good activity in the first catalytic run. However, the crystal structure of MOF-5 was completely destroyed during the following reaction runs, as confirmed by PXRD, which caused a big loss of the activity.  相似文献   

9.
The catalytic oxidation of hydrogen sulfide (H2S) to elemental sulfur was studied over CeO2-TiO2 catalysts. The synthesized catalysts were characterized by various techniques such as X-ray diffraction, BET, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia, and scanning electron microscopy (SEM). Catalytic performance studies of the CeO2-TiO2 catalysts showed that H2S was successfully converted to elemental sulfur without considerable emission of sulfur dioxide. CeO2-TiO2 catalysts with Ce/Ti=1/5 and 1/3 exhibited the highest H2S conversion, possibly due to the uniform dispersion of metal oxides, high surface area, and high amount of acid sites.  相似文献   

10.
Pt-(CdS/TiO2) film-typed photocatalysts are prepared with a doctor-blade method followed by a chemical bath deposition (CBD) process, and the films are characterized by UV-vis spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy. The film-typed structure is composed of photocatalysts and Pt metal part on a FTO substrate without additional electric device, so it is relatively simpler than the conventional photoelectrochemical cell. CdS quantum dots are introduced as a sensitizer for visible light response. Amounts of CdS quantum dots on TiO2 surface are increased with increasing CBD cycles, but they start to aggregate after certain CdS concentration due to oversaturation phenomenon. This high CdS content induces high electron losses, and therefore it reduces amounts of hydrogen production. As a result, there is a saturation point of CdS content at Cd/Ti ratio of 0.197, and the amounts of evolved hydrogen are 5.407 μmol/cm2·h at this photocatalyst formulation.  相似文献   

11.
The production of isophthalic acid (IPA) from the oxidation of m-xylene (MX) by air is catalyzed by H3PW12O40 (HPW) loaded on carbon and cobalt. We used H2O2 solution to oxidize the carbon to improve the catalytic activity of HPW@C catalyst. Experiments reveal that the best carbon sample is obtained by calcining the carbon at 700 °C for 4 h after being impregnated in the 3.75% H2O2 solution at 40 °C for 7 h. The surface characterization displays that the H2O2 modification leads to an increase in the acidic groups and a reduction in the basic groups on the carbon surface. The catalytic capability of the HPW@C catalyst depends on its surface chemical characteristics and physical property. The acidic groups play a more important part than the physical property. The MX conversion after 180 min reaction acquired by the HPW@C catalysts prepared from the activated carbon modified in the best condition is 3.81% over that obtained by the HPW@C catalysts prepared from the original carbon. The IPA produced by the former is 46.2% over that produced by the latter.  相似文献   

12.
At temperatures lower than 250 °C the deactivation of zeolite NaX catalyst occurred in the presence of water vapor. The gradual accumulation of water vapor on the surface of catalyst could cause deactivation of catalyst. The zeolite NaX-WO3 catalysts were prepared to study a method preventing deactivation of catalysts from the adsorption of water vapor. The zeolite NaX-WO3 (9 : 1) with a low content of WO3 showed the highest conversion of H2S. It is believed that the addition of WO3 caused either a decrease of the strong adsorption of water vapor on the zeolite NaX or an increase of the reducibility of WO3 by some interactions between zeolite NaX and WO3. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

13.
The electrochemical activation of ethylene oxidation was studied over rhodium catalysts of different thickness (40, 100 and 160 nm) sputtered on top of a thin layer of TiO2 deposited on YSZ. The strong relationship between catalytic activity and oxidation state of rhodium was confirmed. Under open-circuit operation the catalyst potential appears as a suitable indicator of the surface oxidation state of rhodium allowing a prediction of the catalytic behavior from solid electrolyte potentiometric measurements. Under closed-circuit conditions the catalyst potential was used as a tool to tune the catalytic activity of rhodium which showed increasing promotional efficiency with decreasing catalyst film thickness.  相似文献   

14.
In this study, innovative TiO2/Al2O3 mono/multilayers were applied by atomic layer depositions (ALD) on ASTM-AZ-31 magnesium/aluminum alloy to enhance its well-known scarce corrosion resistance. Four different configurations of ALD layers were tested: single TiO2 layer, single Al2O3 layer, Al2O3/TiO2 bilayer and Al2O3/TiO2/Al2O3/TiO2 multilayer deposited using Al[(CH3)]3 (trimethylaluminum, TMA), and TiCl4 and H2O precursors. All depositions were performed at 120°C to obtain an amorphous-like structure of both oxide layers. The four coatings were then investigated using different techniques, such as scanning electron microscope (SEM), stylus profilometer, glow discharge optical emission spectrometry (GDOES) and polarization curves in 0.05-M NaCl solution. The thickness of all the coatings was around 100 nm. The layers compositions were successfully investigated by the GDOES technique, although obtained data seem to be affected by substrate roughness and differences in sputtering rates between ceramic oxides and metallic magnesium alloy. Corrosion resistance showed to be strongly enhanced by the nanometric coatings, giving lower corrosion current densities in 0.05-M NaCl media with respect to the uncoated substrate (from 10−4 to 10−6 A/cm2 for the single layers and from 10−4 to 10−8 A/cm2 for the bi- and multilayers). All polarization curves on coated samples also showed a passive region, wider for the bi-layer (from −0.58 to −0.43 V with respect to Ag/AgCl) and multilayer (from −0.53 to −0.38 V with respect to Ag/AgCl) structures.  相似文献   

15.
16.
CO impedes the low temperature (<170 °C) oxidation of C3H6 on supported Pt. Supported Au catalysts are very effective in the removal of CO by oxidation, although it has little propene oxidation activity under these conditions. Addition of Au/TiO2 to Pt/Al2O3 either as a physical mixture or as a pre-catalyst removes the CO and lowers the light-off temperature (T 50) for C3H6 oxidation compared with Pt catalyst alone by ~54 °C in a feed of 1% CO, 400 ppm C3H6, 14% O2, 2% H2O.  相似文献   

17.
The photo-electrochemical characterization of the hetero-system CoFe2O4/TiO2 was undertaken for the Ni2+ reduction under solar light. The spinel CoFe2O4 was prepared by nitrate route at 940 °C and the optical gap (1.66 eV) was well matched to the sun spectrum. The flat band potential (-0.21 VSCE) is more cathodic than the potential of Ni2+/Ni couple (-0.6 VSCE), thus leading to a feasible nickel photoreduction. TiO2 with a gap of 3.2 eV is used to mediate the electrons transfer. The reaction is achieved in batch configuration and is optimized with respect to Ni2+ concentration (30 ppm); a reduction percentage of 72% is obtained under sunlight, the Ni2+ reduction is strongly enhanced and follows a first order kinetic with a rate constant of 4.6×10-2 min-1 according to the Langmuir-Hinshelwood model.  相似文献   

18.
The selective oxidation of hydrogen sulfide in the presence of excess water and ammonia was investigated by using vanadium-bismuth based mixed oxide catalysts. Synergistic effect on catalytic activity was observed for the mechanical mixtures of V-Bi-O and Sb2O4. Temperature programmed oxidation (TPO), X-ray photoelectron spectroscopy (XPS), and two separated bed reactivity test results supported the role of Sb2O4 for reoxidizing the reduced V-Bi-O during the reaction. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

19.
Two methods were used to obtain a catalytically active oxide coating on the surface of titanium for the catalytic afterburning of diesel soot: plasma electrochemical formation of an oxide film on the surface of titanium and extraction pyrolytic deposition of the Li2Cu2(MoO4)3 compound. The Li2Cu2(MoO4)3/TiO2 + SiO2/Ti compositions synthesized by the single-step extraction pyrolytic treatment of the oxidized surface of titanium ensured a high burning rate of soot of ∼300°C. The subsequent deposition of Li2Cu2(MoO4)3 lowers the activity of the catalyst, due probably to the growth of molybdate phase crystallites and the filling of open oxide film pores. Double lithium-copper molybdate is able to reduce appreciably the concentration of CO in the oxidation products of soot. The advantages of these methods are the possibility of forming high-cohesion durable coatings on surfaces of any complexity, the simplicity of their implementation, and high productivity and low cost. The obtained results can be recommended for use in developing methods for creating composite coatings on catalytic soot filters.  相似文献   

20.
The selective oxidation of hydrogen sulfide containing excess water and ammonia was studied over vanadium oxide-based catalysts. The investigation was focused on the role of V2O5, and phase cooperation between V2O5 and Bi2O3 in this reaction. The conversion of H2S continued to decrease since V2O5 was gradually reduced by treatment with H2S. The activity of V2O5 was recovered by contact with oxygen. A strong synergistic phenomenon in catalytic activity was observed for the mechanically mixed catalysts of V2O5 and Bi2O3. Temperature-programmed reduction (TPR) and oxidation (TPO) and two bed reaction tests were performed to explain this synergistic effect by the reoxidation ability of Bi2O3. This paper is dedicated to Professor Wha Young Lee on the occasion of his retirement from Seoul National University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号