首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Star‐shaped and linear block thermoplastic poly(styrene‐b‐butadiene) copolymer (SBS)/organophilic montmorillonite clays (OMMT) were prepared by a solution approach. The intercalation spacing in the nanocomposites and the degree of dispersion of nanocomposites were investigated by X‐ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The mechanical properties, dynamic mechanical properties, and thermal stability of these nanocomposites were determined. Results showed that SBS chains were well intercalated into the clay galleries and an intercalated nanocomposite was obtained. The mechanical strength of nanocomposites with the star‐shaped SBS/OMMT were significantly increased. The addition of OMMT also gave an increase of the elongation, the dynamic storage modulus, the dynamic loss modulus, and the thermal stability of nanocomposites. The increase of the elongation of nanocomposites indicates that SBS has retained good elasticity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3430–3434, 2004  相似文献   

2.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

3.
采用溶液混合方法制备了苯乙烯/丁二烯三元嵌段共聚物(SBS)/有机蒙脱土(OMMT)纳米复合材料(NC),对SBS/OMMT NC的热学性能进行了研究。结果表明,添加OMMT对于所有复合体系均提高了耐热性能,其中以SBS4402/OMMT-DK1B体系最为明显,热失重中心温度Tdc提高幅度达27℃;当OMMT用量为2.5质量份时,NC的Tdc最高,表明耐热性能最好,超过2.5质量份后,耐热性能下降;星型结构SBS耐热性能的提高明显高于线型SBS。  相似文献   

4.
Poly(vinyl chloride)/organophilic montmorillonite (PVC/OMMT) nanocomposites were prepared by means of melt blending. A liquid epoxy resin was used to aid PVC chains in intercalating into silicate layers. The effects of the preparation methods and epoxy resin contents on the melt intercalation of PVC were investigated. The morphology development, mechanical properties and optical properties of the PVC/OMMT composites were tested as functions of epoxy resin content and OMMT content. Wide‐angle X‐ray diffraction, transmission electron microscopy and scanning electron microscopy were used to characterize the morphology of the resulting composites. After being pretreated by the epoxy resin, the OMMT layers were largely intercalated into the PVC matrix, and even exfoliated at high epoxy resin content. The addition of epoxy resin led to a decrease in optical clarity of the composites but improved the processing stability, as indicated by yellowness index and haze measurement. However, the optical clarity of the composites containing 4 phr of epoxy resin (PVC/E‐OMMT) was improved by increasing the OMMT content, as shown by light transmission. Both the tensile strength and notched Izod impact strength of the PVC/E‐OMMT composites reached their maximum values when the OMMT content was 0.5 phr and the epoxy resin content was 2 phr. With further increase of the OMMT content and the epoxy resin content, the tensile strength decreased but was still higher than that of original PVC. The method of addition of epoxy resin had little effect on the physical properties but mainly influenced the morphology of PVC/OMMT nanocomposites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2184–2191, 2003  相似文献   

5.
Transparent poly(styrene‐butadiene‐styrene) (SBS)‐quantum dots (QDs) composites (SBS/CdTe QDs) that simultaneously possess strong photoluminescence (PL) and enhanced mechanical properties are presented for the first time based on the facile blending of SiO2‐hybridized CdTe QDs with SBS. UV–vis spectrum and fluorescence measurement show that SBS/CdTe QDs composites exhibit good optical properties. The results of transmission electron microscopy show good dispersion of CdTe QDs in the SBS matrix. The results of dynamic mechanical thermal analysis indicate that the micro‐phase separated structure of the SBS is exist in the composites, and the presence of CdTe QDs can lead to an decrease of glass transition temperatures of polybutadiene (PB) and polystyrene(PS) domains. In addition, mechanical tests reveal that the addition of CdTe QDs is a useful approach to improve the mechanical properties of SBS. Meanwhile, the fluorescent photographs taken under ultraviolet light prove that SBS/CdTe QDs composites possess strong PL. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
Nanocomposites of nanosized CaCO3/SBS/PP were prepared by using twin‐screw and single‐screw extruder. By adding nanosized CaCO3 particles into SBS/PP blend, the notched impact strength, flexural modulus, and tensile strength of the composites can be improved, whereas, by adding microsized CaCO3 particles into SBS/PP blend, the notched impact strength of the composite is decreased markedly. At nanosized CaCO3 content of 16 phr (parts per hundred PP resin by weight), the impact strength of nanosized CaCO3/SBS/PP composite reaches 56.55 KJ/m2, which is 1.27 times that of SBS/PP blend. At nanosized CaCO3 content of 4 phr, the tensile strength of the composites reaches 31.3 MPa, which is 1.23 times that of SBS/PP blend. The maximum and balanced torque of the composites improves significantly by the addition of CaCO3 nanoparticles. The increased shear force during compounding continuously breaks down SBS particles, resulting in the reduction of the SBS particles size, and improving the dispersion of SBS particles in PP matrix. Thus the toughening effect of SBS on matrix was improved. Simultaneously, the existence of SBS provides the matrix with a good intrinsic toughness, satisfying the condition that nanosized inorganic particle of CaCO3 efficiently toughens polymer matrix. The synergistic toughening function of nanosized CaCO3 and SBS on PP matrix was exhibited. POLYM. ENG. SCI. 47:201–206, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
Nanocomposites of organic nano‐montmorillonite (nano‐OMMT)‐filled immiscible polyamide 6 (PA6)/polystyrene (PS) blends were prepared by three different processing methods. Masterbatch M1 of OMMT/PA6 and masterbatch M2 of OMMT/PS were prepared as separate masterbatchs by melt mixing with PA6 or PS, and then either mixed together or each mixed individually with appropriate amounts of PS or PA6, respectively. The effects of nano‐OMMT content and processing method on the structure, phase morphology, and mechanical properties of the PA6/PS/OMMT nanocomposites were investigated by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, and mechanical properties tests. The results showed that the nano‐OMMT by M1 and M2 masterbatches dispersed primarily as exfoliated platelets in the PA6 matrix in the final composites regardless of the method of preparation. A drastic decrease of dispersed PS phase size and a very homogeneous size distribution were observed with the addition of nano‐OMMT. The PA6/PS/OMMT nanocomposites prepared from the M2 displayed the smallest dispersed PS phase size and best distribution of OMMT. The improvement of the mechanical properties of the PA6/PS/OMMT nanocomposites was attributed to the enhanced compatibilization of the immiscible PA6/PS blends by using nano‐OMMT. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

8.
Polypropylene (PP) and poly(styrene‐b‐butadiene‐b‐styrene) block copolymer (SBS) were melt‐blended in the presence of initiator system. Dicumyl peroxide (DCP)/Triallyl isocyanurate (TAIC) via self‐deigned VE, aiming at in situ reactive compatibilization of toughed PP/SBS blend. The reactivity, morphology and mechanical properties of PP/SBS/DCP/TAIC blends were studied. Online torque detection was conducted to monitor changes in viscosities of reactive compatibilized blends, which could give proof of the interfacial grafted reaction induced by DCP/TAIC system. The effect of reactive compatibilization on the dispersed particles sizes and interfacial adhesion was studied by scanning electron microscopy. Analysis on mechanical performance revealed the impact strength improved after treated by initiator system, moreover, the impact‐fractured surface observation showed, the failure mode changed from debonding mechanism of neat 50PP/50SBS blend to plastic deformation mechanism of blend containing 3.0 phr initiator system. With improved interfacial adhesion, compatibilized blends not only were toughened but also exhibited enhanced tensile strength and thermal stability. Dynamic mechanical analysis showed a reduction of between PP phase and the PB segments in SBS phase, indicating reactive compatibilization of the blend was achieved. In the final part, a brief discussion was given about the dominant effects from chain scission of PP matrix to intergrafting reactions of PP and SBS, under different content of DCP/TAIC initiator system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41543.  相似文献   

9.
With some polymerizable small molecules grafting onto the montmorillonite surface, we disposed the clay through in‐situ emulsion polymerization, and the structure of the modified montmorillonites were studied through Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD). The nanocomposites of poly(styrene‐b‐butadiene‐b‐styrene) (SBS)/montmorillonite with excellent mechanical properties were prepared by mixing SBS and the modified montmorillonite on the double rollers at 150°C. The exfoliation of the layered silicates was confirmed by XRD analysis and transmission electron microscopy (TEM) observation. After mechanical kneading of the molten nanocomposites, the exfoliation structure of the silicates is still stable for polystyrene macromolecules grafting onto the silicates. Upon the addition of the modified montmorillonite, the tensile strength, elongation at break and tear strength of the nanocomposites increased from 22.6 MPa to 31.1 MPa, from 608% to 948%, from 45.32 N/mm to 55.27 N/mm, respectively. The low‐temperature point of glass‐transition temperature (Tg) of the products was about −77°C, almost constant, but the high‐temperature point increased from 97°C to 106°C. In addition, the nanocomposites of SBS and modified montmorillonites showed good resistance to thermal oxidation and aging. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
Clay/styrene–butadiene–styrene (SBS) modified bitumen composites were prepared by melt blending with different contents of sodium montmorillonite (Na‐MMT) and organophilic montmorillonite (OMMT). The structures of clay/SBS modified bitumen composites were characterized by XRD. The XRD results showed that Na‐MMT/SBS modified bitumen composites may form an intercalated structure, whereas the OMMT/SBS modified bitumen composites may form an exfoliated structure. Effects of MMT on physical properties, dynamic rheological behaviors, and aging properties of SBS modified bitumen were investigated. The addition of Na‐MMT and OMMT increases both the softening point and viscosity of SBS modified bitumens and the clay/SBS modified bitumens exhibited higher complex modulus, lower phase angle. The high‐temperature storage stability can also be improved by clay with a proper amount added. Furthermore, clay/SBS modified bitumen composites showed better resistance to aging than SBS modified bitumen, which was ascribed to barrier of the intercalated or exfoliated structure to oxygen, reducing efficiently the oxidation of bitumen, and the degradation of SBS. POLYM. ENG. SCI., 47:1289–1295, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
The shear rheological properties of polystyrene (PS)/nano‐CaCO3 composites were studied to determine the plasticization of nano‐CaCO3 to PS. The composites were prepared by melt extrusion. A poly(styrene–butadiene–styrene) triblock copolymer (SBS), a poly(styrene–isoprene–styrene) triblock copolymer (SIS), SBS‐grafted maleic anhydride (SBS–MAH), and SIS‐grafted maleic anhydride were used as modifiers or compatibilizers. Because of the weak interaction between CaCO3 and the PS matrix, the composites with 1 and 3 phr CaCO3 loadings exhibited apparently higher melt shear rates under the same shear stress with respect to the matrix polymer. The storage moduli for the composites increased with low CaCO3 concentrations. The results showed that CaCO3 had some effects on the compatibility of PS/SBS (or SBS–MAH)/CaCO3 composites, in which SBS could effectively retard the movement of PS chain segments. The improvement of compatibility, due to the chemical interaction between CaCO3 and the grafted maleic anhydride, had obvious effects on the rheological behavior of the composites, the melt shear rate of the composites decreased greatly, and the results showed that nano‐CaCO3 could plasticize the PS matrix to some extent. Rheological methods provided an indirect but useful characterization of the composite structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

12.
BACKGROUND: Ethylene–(vinyl alcohol) (EVOH) copolymer/organo‐modified montmorillonite (OMMT) composites were investigated. Composites with two different percentages by weight of OMMT were prepared using a melt‐extrusion procedure in a twin‐screw extruder, using EVOH as matrix. Films made of EVOH and EVOH/OMMT composites were prepared in a cast‐film extrusion line. RESULTS: The mechanical properties were evaluated by tensile tests and the fracture behaviour was analysed using the essential‐work‐of‐fracture (EWF) method. Fracture characterization was carried out for the two main processing directions: melt flow direction and transverse direction. Fractographic observations were made using scanning electron microscopy. CONCLUSION: The tensile test results indicated good compatibility between EVOH and OMMT. In addition, the fracture tests showed the influence of the clay particle arrangement on the fracture behaviour, showing an increase in the specific essential work of fracture, we, which was attributed to the EVOH–OMMT interaction. The plastic term, βwp, showed different trends depending on the test direction, explained by the size of the plastic zone and the restrictions to the EVOH plastic flow promoted by the clay particles. In this sense, the EWF method is shown to be a very useful tool for the analysis of structure–property relationships in polymer–organo‐clay composites. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486.  相似文献   

14.
The polymer, Hydrogenated Nitrile‐Butadiene Rubber (HNBR) was melt compounded with organophilic montmorillonite (OMMT). The dispersion of the OMMT in the HNBR matrix was characterized by X‐ray diffraction (XRD), which indicated that at the temperature of 100°C, the organoclay belong to the exfoliated and interlayer structure. The effect of sulfur on the dispersion of OMMT in the polymer matrix was also studied. The vulcanization changed the dispersion of OMMT in polymer matrix greatly and the basal spacing of clay layers is decreased after vulcanization. The mechanical properties, Akron abrasion and the crude oil medium aging‐resistant of HNBR nanocomposites were examined as a function of the OMMT content in the matrix of polymer. The results of the test show remarkable improvement in tensile strength, tear strength, aging‐resistant, and hardness of HNBR nanocomposites than that of unfilled HNBR. It is obvious that the 10 phr of OMMT filled nanocomposites have the best mechanical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Advanced polymer composites containing organic–inorganic fillers are gaining increasing attention due to their multifunctional applications. In this work, poly(styrene‐butadiene‐styrene) (SBS) composites containing magnetite‐functionalized graphene (FG) were prepared by a dissolution ? dispersion ? precipitation solution method. Evidently, through morphology studies, amounts of FG were well distributed in the SBS matrix. Improvements in neat SBS properties with respect to FG loading in terms of thermal stability, creep recovery and mechanical properties are presented. As expected, the addition of FG improved the thermal stability and mechanical properties of the composites. The yield strength and Young's modulus of the SBS increased by 66% and 146% at 5 wt% filler loading which can be attributed to the reinforcing nature of FG. Similarly, an increase in the storage and loss modulus of the composites showed a reinforcement effect of the filler even at low concentration. The results also showed the significant role of FG in improving the creep and recovery performance of the SBS copolymer. Creep deformation decreased with filler loading but increased with temperature. © 2017 Society of Chemical Industry  相似文献   

16.
Poly(vinyl chloride) (PVC)/organophilic‐montmorillonite (OMMT) nanocomposites were prepared by direct melt intercalation. PVC/compatibilizer ((vinyl acetate) copolymer (VAc))/OMMT nanocomposites were also prepared by melt intercalation by a masterbatch process. The effect of OMMT content on the nanostructures and properties of nanocomposites was studied. The nanostructures were studied by wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). The linear viscoelastic properties and dynamic mechanical properties of PVC/OMMT nanocomposites were also investigated by an advanced rheometric expansion system (ARES) rheometer. The results showed that partially exfoliated and partially intercalated structures coexisted in the PVC/OMMT and PVC/VAc/OMMT nanocomposites. The mechanical properties test results indicated that the notched Charpy impact strengths of nanocomposites were improved compared to that of pristine PVC and had a maximum value at 1 phr OMMT loadings. The compatibilizer could further improve the impact strengths. But the existence of OMMT decreased the thermal stability of PVC/OMMT and PVC/VAc/OMMT nanocomposites. The linear viscoelastic properties test results indicated the dependence of G′ and G″ on ω shows nonterminal behaviors, and they had better processibility compared with pristine PVC. However, the glass transition temperatures of PVC/OMMT nanocomposites almost had little change compared to that of pristine PVC. POLYM. COMPOS., 27:55–64, 2006. © 2005 Society of Plastics Engineers  相似文献   

17.
Natural rubber (NR) vulcanizates exhibit good mechanical properties compared to vulcanizates of synthetic rubbers. Incorporation of a conventional filler at higher loadings to NR enhances its modulus, while reduction in tensile strength and elongation. This paper presents a new strategy for development of a NR‐clay nanocomposite with enhanced mechanical properties by incorporation of lower loadings (2–8 phr) of cetyl trimethyl ammonium bromide modified montmorillonite clay (OMMT‐C) under acid‐free environment. The effect of OMMT‐C loading on cure characteristics, rubber‐filler interactions, crosslink density, dynamic mechanical thermal properties, and mechanical properties were evaluated. Incorporation of OMMT‐C accelerated the vulcanization process and enhanced mechanical properties. X‐ray diffraction analysis and scanning electron microscopy images revealed that the formation of intercalated clay structures at lower OMMT‐C loadings, and clay aggregates at higher loadings. A nanocomposite at OMMT‐C loading of 2 phr exhibited the best balanced mechanical properties, and was associated with highest crosslink density and rubber–filler interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46502.  相似文献   

18.
We successfully synthesized an exfoliated styrene–butadiene–styrene triblock copolymer (SBS)/montmorillonite nanocomposite by anionic polymerization. Gel permeation chromatography showed that the introduction of organophilic montmorillonite (OMMT) resulted in a small high‐molecular‐weight fraction of SBS in the composites, leading to a slight increase in the weight‐average and number‐average molecular weights as well as the polydispersity index. The results from 1H‐NMR revealed that the introduction of OMMT almost did not affect the microstructure of the copolymer when the OMMT concentration was lower than 4 wt %. Transmission electron microscopy and X‐ray diffraction showed a completely exfoliated nanocomposite, in which both polystyrene and polybutadiene blocks entered the OMMT galleries, leading to the dispersion of OMMT layers on a nanoscale. The exfoliated nanocomposite exhibited higher thermal stability, glass‐transition temperature, elongation at break, and storage modulus than pure SBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

19.
Montmorillonite (Mt) was intercalated with cetyltrimethylammonium bromide and functionalized with three types of aminosilane (3‐aminopropyltrimethoxysilane, n‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane and 3‐[2‐(2‐aminoethylamino)ethylamino]propyltrimethoxysilane). The modified Mt was compounded with natural rubber (NR)/epoxidized natural rubber (ENR) via one‐step latex compounding. The effect of the modified Mt content on the oil resistance and mechanical properties of the NR/ENR/modified Mt composites was investigated. The X‐ray diffraction patterns of the composites showed partial intercalation/exfoliation of the modified Mt in the rubber matrix. Cryogenic fracture and X‐ray fluorescence results revealed highly dispersed modified Mt in the composites in the presence of 10 phr ENR. All three aminosilane groups slightly improved the oil resistance, with the long‐alkyl‐length group producing the greatest improvement. The addition of a small amount of modified Mt improved both oil resistance and tensile strength by increasing in the average diffusion path length in the NR matrix and enhancing the interaction between the modified Mt and the epoxide groups in ENR. The addition of 1.0 phr of modified Mt increased the tensile strength by 18% and decreased the elongation at break by 12% compared with a neat NR/ENR blend. © 2017 Society of Chemical Industry  相似文献   

20.
用熔融挤出的方法制备了聚碳酸酯(PC)/N烯腈-丁二烯-苯乙烯共聚物(ABS)/有机蒙脱土(OMMT)合金,考察了OMMT用量对PC/ABS合金力学性能和加工性能的影响,观察了其相分布和OMMT的分散情况以及冲击断面的形貌,并分析了机理。结果发现.ABS相分散在PC基体中.绝大部分的OMMT分散在ABS相中,且部分呈纳米级分散;固定PC/ABS质量比为70/30,加入OMMT后体系的拉仲强度变化不大,冲击强度降低较大;OMMT用量为2phr时,弯曲性能最佳;随着蒙脱土用量的增加,熔体质量流动速率(MFR)先增大后降低,在OMMT用量为5phr时.流动性最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号