首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
以马来酸酐(MAH)接枝高密度聚乙烯(HDPE)(HDPE-g-MAH)作为相容剂,通过熔融共混法制备了HDPE/聚酰胺11(PA 11)共混物.研究了HDPE-g-MAH对HDPE/PA 11共混物的增容作用以及对共混物性能的影响.结果表明,HDPE-g-MAH对共混体系有明显的增容作用,共混物的拉伸强度和冲击强度得到提高;相容剂的加入,使共混物的结晶温度升高.  相似文献   

2.
聚乙烯和马来酸酐接枝聚乙烯对尼龙66性能的影响   总被引:1,自引:0,他引:1  
采用熔融共混法制备了高密度聚乙烯/尼龙66(HDPE/PA66)和马来酸酐接枝聚乙烯/尼龙66(PE-g-MAH/PA66)复合材料,对其力学性能和熔体流动速率进行了测试,对共混物形貌进行了扫描电镜观察。研究表明,与不相容HDPE/PA66共混物比较,PE-g-MAH更能有效改善尼龙66的冲击韧性和加工性能,同时使保持PA66较高的拉伸强度。其原因是基于PE-g-MAH相的细微分散以及与PA66之间存在较强的界面粘附,有利于应力的有效传递。  相似文献   

3.
Morphology and mechanical properties of polypropylene (PP)/high density polyethylene (HDPE) blends modified by ethylene-propylene copolymers (EPC) with residual PE crystallinity were investigated. The EPC showed different interfacial behavior in PP/HDPE blends of different compositions. A 25/75 blend of PP/HDPE (weight ratio) showed improved tensile strength and elongation at break at low EPC content (5 wt %). For the PP/HDPE = 50/50 blend, the presence of the EPC component tended to make the PP dispresed phase structure transform into a cocontinuous one, probably caused by improved viscosity matching of the two components. Both tensile strength and elongation at break were improved at EPC content of 5 wt %. For PP/HDPE 75/25 blends, the much smaller dispersed HDPE phase and significantly improved elongation at break resulted from compatibilization by EPC copolymers. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Novel compatibilized polyoxymethylene/thermoplastic polyurethane (POM/TPU) blends are successfully developed using multifunctional chain extender, Joncryl ADR‐4368, as the compatibilizer. The outstanding compatibilization efficiency of Joncryl on POM/TPU blend was demonstrated by its even higher mechanical properties with only 0.5 wt % of Joncryl than those with 5 wt % of three commonly used compatibilizers. Addition of only 0.5 wt % Joncryl can double the impact strength and significantly improve its tensile strength and flexural strength for POM/TPU (75/25) blend. SEM images show that Joncryl can reduce TPU particle size and enhance the interfacial interactions between POM and TPU. The interparticle distance of TPU in POM/TPU/Joncryl blends was calculated as 0.2 μm, quite close to the critical matrix ligament thickness of POM/TPU blends (0.18 μm). The impact force profile vividly shows that the addition of Joncyl in POM/TPU blends can dramatically increase the total impact energy absorbed by this blend system and enhance the interfacial interactions between POM and TPU. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
POE-g-MAH反应性增容HDPE/PA66共混合金性能研究   总被引:1,自引:0,他引:1  
以乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)作为高密度聚乙烯(HDPE)/尼龙66(PA66)共混合金的反应性增容剂,采用熔融挤出法制备了HDPE/PA66/POE-g-MAH共混合金。研究了POE-g-MAH用量对共混合金形态结构、力学性能、流变性能和热致形状记忆性能的影响。结果表明:通过POE-g-MAH的反应性增容作用,改善了HDPE/PA66合金的界面黏结,促进了分散相粒子的细化,显著提高了合金的力学和热致形状记忆性能,并缩短了塑化时间。  相似文献   

6.
The reactive compatibilization of immiscible polymers such as high‐density polyethylene (HDPE) and poly(ethylene terephthalate) (PET) by interfacial grafting of maleic anhydride (MA) without initiator in the molten state was investigated in this study. Grafting reaction of MA onto HDPE was carried out in a Rheocord HAAKE mixer varying reaction parameters such as the temperature, the shear rate, and the time of reaction. Then, the purified copolymers were characterized by infrared spectrometry and the MA content of HDPE‐g‐MA copolymers was determined by volumetric titration. It has been shown that thermomechanical initiation is sufficient to reach grafting yield of 0.3 to 2.5 wt % of MA. We studied then the compatibilization of HDPE/PET blends by interfacial grafting of MA. The in situ interfacial reaction leads to the formation of HDPE‐g‐MA copolymer which acts as a compatibilizer in the blends. The foremost interest of this work is that it provides a simple way of compatibilization of immiscible blends of polyolefin and polyester in one transformation step without using free‐radical initiators. The mechanical properties of the blends are strongly improved by the addition of small quantities of MA. The SEM observations of the compatibilized blends show a deep modification of the structure (i.e., enhanced regularity in the nodule dispersion and better interfacial adhesion). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 874–880, 2001  相似文献   

7.
ABS/SMA/GF复合材料的制备及性能   总被引:1,自引:0,他引:1  
以丙烯腈-丁二烯-苯乙烯共聚物(ABS)及玻璃纤维(GF)为原料,以苯乙烯-马来酸酐共聚物(SMA)作为界面相容剂,研究界面相容剂对玻璃纤维增强ABS复合材料力学性能及界面粘接的影响.结果表明:加入SMA玻纤增强ABS复合材料的力学性能明显提高;随着玻纤质量分数增加,复合材料的拉伸强度、弯曲强度均逐渐增加,冲击强度下降.  相似文献   

8.
利用定制的熔融浸渍装置制备了长玻璃纤维增强聚酰胺66(PA66/LGF)复合材料,并对其力学性能、界面黏结性等进行了表征,探讨了玻璃纤维含量、润滑剂含量、相容剂含量以及切粒长度等因素对复合材料性能的影响,得到了PA66/LGF复合材料优化的配方设计与切粒长度.结果表明,当玻璃纤维含量为43%(质量分数,下同)、切粒长度...  相似文献   

9.
利用十八醇和环氧氯丙烷反应合成了十八烷基缩水甘油醚(OGE),并将其作为熔融共混方法中的增容剂,制备了尼龙6(PA6)/高密度聚乙烯(HDPE)共混材料。研究了OGE用量对共混物的热性能、结晶行为、形态结构、力学性能及吸水性的影响。结果表明,OGE促进了HDPE在PA6基体中的分散,在保持共混材料吸水率的同时,有效改善了共混物的力学性能,与未加入增容剂的PA6/HDPE共混物相比,OGE含量为2.9%(m/m)时,共混材料的缺口冲击强度、拉伸模量、断裂伸长率、弯曲强度分别提高了12%、33%、95%、6%,拉伸强度基本保持不变,而弯曲模量下降了8%。  相似文献   

10.
The compatibilization of mixtures of polyolefins or of polyolefins with polystyrene using either liquid polybutadiene (l-PB)/organic peroxide or styrene-butadiene-styrene (SBS) block copolymers was investigated. Tensile impact strength was chosen as a measure of compatibility. Binary blends LDPE/high-impact polystyrene (HIPS) and LDPE/poly(propylene) (PP) as well as LDPE/HDPE/PP/HIPS blends were prepared by blending in the chamber of a Brabender Plasticorder. Composition of the blends corresponds to real commingled plastic waste. It was found that l-PB-based compatibilizer enhanced the impact strength of LDPE/HIPS blends with LDPE contents higher than 60 wt.-% only. Also SBS copolymer enhanced the impact strength of LDPE/PP blends with LDPE contents higher than 40 wt.-%. Both the compatibilizers substantially increased the toughness of LDPE/HDPE/PP/HIPS blends with composition similar to the municipal plastic waste.  相似文献   

11.
PA-6/UHMWP/EHDPE-g-MAH共混合金的形态结构与性能的研究   总被引:5,自引:0,他引:5  
通过SEM观察和机械性能测试,研究了PA 6 UHMWPE HDPE g MAH共混合金的形态结构和性能。结果表明:加入HDPE g MAH可有效地改善共混物的相容性,增强两相界面间的粘结强度,降低分散相尺寸;同时还改善了共混物的机械性能,降低了熔体流动速率,提高了常温和低温冲击强度,降低了吸水率。  相似文献   

12.
This paper describes the effects of composition and processing conditions on the efficiency of the compatibilizer prepared from a thermotropic liquid crystalline polymer (TLCP) and the sodium salt of a poly(ethylene‐cor‐acrylic acid) ionomer (EAA‐Na) in TLCP/low‐density polyethylene (LDPE) blends and TLCP/high‐density polyethylene (HDPE) blends. The TLCP‐ionomer graft copolymer formed by a melt acidolysis reaction effectively reduced the interfacial tension between TLCP and polyethylene, which improved impact strength and toughness of the compatibilized blends. Higher processing temperatures for the reactive extrusion produced a more efficient compatibilizer, presumably due to increased graft‐copolymer formation, but the reaction temperature had little effect on the impact strength of compatibilized blends for temperatures above 300°C. The addition of the compatibilizer to TLCP/LDPE blends significantly increased the melt viscosity due to increased interfacial adhesion. The TLCP/EAA‐Na ratio used to prepare the compatibilizer had little effect on the performance of the compatibilizer. Although the compatibilizer can be prepared in situ by blending and extruding a ternary blend of TLCP/EAA‐Na/polyethylene, pre‐reacting the compatibilizer resulted in blends with improved toughness and elongation.  相似文献   

13.
The functionalization of poly(butylene terephthalate) (PBT) has been accomplished in a twin screw extruder by grafting maleic anhydride (MA) using a free radical polymerization technique. The resulting PBT‐g‐MA was successfully used as a compatibilizer for the binary blends of polyester (PBT) and polyamide (PA66). Enhanced mechanical properties were achieved for the blend containing a small amount (as low as 2.5 %) of PBT‐g‐MA compared to the binary blend of unmodified PBT with PA66. Loss and storage moduli for blends containing compatibilizer were higher than those of uncompatibilized blends or their respective polymers. The grafting and compatibilization reactions were confirmed using FTIR and 13C NMR spectroscopy. The properties of these blends were studied in detail by varying the amount of compatibilizer, and the improved mechanical behaviour was correlated with the morphology with the help of scanning electron microscopy. Morphology studies also revealed the interfacial interaction in the blend containing grafted PBT. The improvement in the properties of these blends can be attributed to the effective interaction of grafted maleic anhydride groups with the amino group in PA66. The results indicate that PBT‐g‐MA acts as an effective compatibilizer for the immiscible blends of PBT and PA66. © 2000 Society of Chemical Industry  相似文献   

14.
The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization on the dynamic mechanical properties of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends have been analyzed at different temperatures. The storage modulus of the blend decreases with an increase in the EVA content. The loss factor curve shows two peaks, corresponding to the transitions of HDPE and EVA, indicating the incompatibility of the blend system. Attempts have been made to correlate the observed viscoelastic properties of the blends with the blend morphology. Various composite models have been used to predict the dynamic mechanical data. The experimental values are close to those of the Halpin–Tsai model above 50 wt % EVA and close to those of the Coran model up to 50 wt % EVA in the blend. For the Takayanagi model, the theoretical value is in good agreement with the experimental value for a 70/30 HDPE/EVA blend. The area under the loss modulus/temperature curve (LA) has been analyzed with the integration method from the experimental curve and has been compared with that obtained from group contribution analysis. The LA values calculated with group contribution analysis are lower than those calculated with the integration method. The addition of a maleic‐modified polyethylene compatibilizer increases the storage modulus, loss modulus, and loss factor values of the system, and this is due to the finer dispersion of the EVA domains in the HDPE matrix upon compatibilization. For 70/30 and 50/50 blends, the addition of a maleic‐modified polyethylene compatibilizer shifts the relaxation temperature of both HDPE and EVA to a lower temperature, and this indicates increased interdiffusion of the two phases at the interface upon compatibilization. However, for a 30/70 HDPE/EVA blend, the addition of a compatibilizer does not change the relaxation temperature, and this may be due to the cocontinuous morphology of the blends. The dynamic vulcanization of the EVA phase with dicumyl peroxide results in an increase in both the storage and loss moduli of the blends. A significant increase in the relaxation temperature of EVA and a broadening of the relaxation peaks occur during dynamic vulcanization, and this indicates the increased interaction between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2083–2099, 2003  相似文献   

15.
A novel side‐chain, liquid‐crystalline ionomer (SLCI) with a poly(methyl hydrosiloxane) main chain and side chains containing sulfonic acid groups was used in blends of polyamide‐1010 (PA1010) and polypropylene (PP) as a compatibilizer. The morphological structure, thermal behavior, and liquid‐crystalline properties of the blends were investigated by Fourier transform infrared, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The morphological structure of the interface of the blends containing SLCI was improved with respect to the blend without SLCI. The compatibilization effect of greater than 8 wt % SLCI for the two phases, PA1010 and PP, was better than the effects of other SLCI contents in the blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2749–2754, 2002; DOI 10.1002/app.10179  相似文献   

16.
In this study, ethylene/styrene interpolymer was used as a compatibilizer for the blends of polystyrene (PS) and high‐density polyethylene (HDPE). The mechanical properties including tensile and impact properties and morphology of the blends were investigated by means of uniaxial tension, instrumented falling‐weight impact measurements, and scanning electron microscopy. Tensile tests showed that the yield strength of the PS/HDPE/ESI blends decreases considerably with increasing HDPE content. However, the elongation at break of the blends tended to increase significantly with increasing HDPE content. The excellent tensile ductility of the HDPE‐rich blends resulted from shield yielding of the matrix. Izod and Charpy impact measurements indicated that the impact strength of the blends increases slowly with HDPE content up to 40 wt %; thereafter, it increases sharply with increasing HDPE content. The impact energy of the HDPE‐rich blends exceeded that of pure HDPE, implying that the HDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of ESI compatibilizer. The correlation between the impact property and morphology of the blends is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4001–4007, 2007  相似文献   

17.
High density polyethylene (HDPE)/Nylon-6 blends of varying concentrations and compatibilized with Na-neutralized ethylene-methacrylic acid ionomer were prepared and characterized. Specimens in sheet form were prepared and tensile strength, elongation, Izod impact resistance, hardness, insulation resistance, arc resistance, dielectric strength, and so on were measured. Thermal testing such as thermogravimetric analysis and differential scanning calorimetry were carried out to study the effect of comapatibilization on the thermal properties of blends. This study reveals that by addition of ionomer, various properties of the blend improve significantly. The optimal quantity of ionomer is about 3%. After further addition of ionomer these properties deteriorate. Morphological study of fractured surface by scanning electron microscope indicates that the immiscible polymer becomes miscible by compatibilization with ionomer.  相似文献   

18.
This work investigated the deformation and fracture behavior of polypropylene–ethylene vinyl alcohol (PP/EVOH) blends compatibilized with ionomer Zn2+. Uniaxial tensile tests and quasistatic fracture experiments were performed for neat PP and for 10 and 20 wt % EVOH blends with different ionomer contents. The addition of EVOH copolymer to PP led to an increase in the Young's modulus whereas the yield strength was decreased with the EVOH content as a consequence of the higher stiffness of EVOH and the poor interfacial adhesion between PP and EVOH, respectively. Furthermore, the incorporation of EVOH into PP promoted stable crack growth. Neat PP displayed nonlinear load‐displacement behavior with some amount of slow crack growth preceding unstable brittle fracture, whereas most PP/EVOH blends exhibited “pseudostable” fracture characterized by slow crack growth that could not be externally controlled. All blends exhibited lower resistance to crack initiation than PP but the fracture propagation resistance was significantly improved. For 10 wt % EVOH blends, the resistance to crack initiation was roughly constant with the ionomer content up to 5%, then it increased with the further addition of compatibilizer. Conversely, for 20 wt % EVOH blends, the resistance to crack initiation appeared to be independent of the ionomer content. The better resistance to crack initiation exhibited by the 10 wt % EVOH blends could be attributed to a higher level of compatibilization in these blends. By contrast, 20 wt % EVOH blends with ≤2% ionomer content showed completely stable crack growth. In addition, JR curves and valid plane strain fracture toughness values for these blends could also be determined. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1271–1279, 2005  相似文献   

19.
The phase morphology, thermal behavior, and impact properties of polyamide-1010 (PA)/polystyrene (PS) blends compatibilized by sulfonated polystyrene (HSPS) and their zinc salts (ZnSPS) were investigated, using a dynamic mechanical analyzer (DMA), a scanning electron microscope (SEM), a differential scanning calorimetry (DSC), and a pendulum impact tester. It was found that the addition of the ionomer had an improved effect on the phase morphology of the resulting blends, where the HSPS was a more effective compatibilizer than was the ZnSPS due to its low melt viscosity and less self-agglomeration in the PA matrix. DSC results showed that with increasing the ionomer content the amount of the less perfect crystals of PA increased in these blends and, hence, led to a small increase in the crystallinity of the PA phase. The crystallization rate of the PA in the resulting blends was accelerated slightly by the ZnSPS but was decreased by the HSPS, which was probably due to the nucleation effect of ZnSPS for PA but no nucleation of HSPS. The best improvement in the notched impact strength of the blends was achieved with the content of the ionomer up to 20 wt % based on the amount of PS. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 61–69, 1998  相似文献   

20.
Ternary in situ composites based on poly(butylene terephthalate) (PBT), polyamide 66 (PA66), and semixflexible liquid crystalline polymer (LCP) were systematically investigated. The LCP used was an ABA30/PET liquid crystalline copolyesteramide based on 30 mol % of p‐aminobenzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The specimens for thermal and rheological measurements were prepared by batch mixing, while samples for mechanical tests were prepared by injection molding. The results showed that the melting temperatures of the PBT and PA66 phases tend to decrease with increasing LCP addition. They also shifted toward each other due to the compatibilization of the LCP. The torque measurements showed that the ternary blends exhibited an apparent maximum near 2.5–5 wt % LCP. Thereafter, the viscosity of the blends decreased dramatically at higher LCP concentrations. Furthermore, the torque curves versus the PA66 composition showed that the binary PBT/PA66 blends can be classified as negative deviation blends (NDBs). The PBT/PA66/LCP blends containing up to 15 wt % LCP were termed as positive deviation blends (PDBs), while the blends with the LCP ≥25 wt % exhibited an NDB behavior. Finally, the tensile tests showed that the stiffness and tensile strength of ternary in situ composites were generally improved with increasing LCP content. The impact strength of ternary composites initially increased by the LCP addition, then deteriorated when the LCP content was higher than 10 wt %. The correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1975–1988, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号