首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, the crispening effect was clearly observed when 38 neutral‐coloured sample pairs with only lightness differences were assessed under 5 neutral backgrounds of different lightness values. The sample pairs are CRT‐based colours, and they are selected along the CIELAB L* axis from 0 to 100. The magnitude of colour difference of each pair is 5.0 CIELAB units. The visual assessment results showed that there is a very large crispening effect. The colour differences of the same pair assessed under different backgrounds could differ by a factor of up to 8 for a sample pair with low lightness. The perceived colour difference was enlarged when the lightness of a sample pair was similar to that of the background. The extent of crispening effect and its quantification are discussed in this investigation. The performances of five colour‐difference equations were also tested, including the newly developed CIEDE2000. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 374–380, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20045  相似文献   

2.
This experiment was carried out to investigate some viewing parameters affecting perceived colour differences. It was divided into eight phases. Each phase was conducted under a different set of experimental conditions including separations, neutral backgrounds, and psychophysical methods. Seventy‐five wool sample pairs were prepared corresponding to five CIE colour centers. The mean colour difference was three CIELAB units. Each pair was assessed by a panel of 21 observers using both the gray scale and pair comparison psychophysical methods. The assessments were carried out using the three different backgrounds (white, mid‐gray, and black) and a hairline gap between the samples. Assessments on the gray background were repeated using a large (3‐inch) gap between the samples. It was found that the visual results obtained from both psychophysical methods gave very similar results. The parametric effect was small, i.e., the largest effect was only 14% between the white and gray background conditions. These visual data were also used to test four colour‐difference formulae: CIELAB, CMC, BFD, and CIE94. The results showed that three advanced colour‐difference formulae performed much better than CIELAB. There was a good agreement between the current results and those from earlier studies. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 331–343, 1999  相似文献   

3.
Varying magnitude of colour differences from threshold up to moderate size in painted sample pairs at five CIE colour centers was estimated by grey scale assessment. Painted samples were produced for constant step width along the main axes of previously determined threshold (x,y,Y)‐ellipsoids with lightness variation at constant (x,y)‐chromaticity starting with threshold length and enlarging it five times for moderate magnitude of colour difference. Pairs were formed for linear extensions along axes and for diagonal combinations at equal step width between axes. The model under test assumes additive linear scale extension in constant proportions of the threshold (x,y,Y)‐ellipsoid for increasing magnitude of perceived colour difference and correlates perceptual main colour characters with main ellipsoid axes. Both assumptions were falsified to some degree: in general, magnitude of colour difference varies differently, though close to linear, and slightly subadditive for the three axes and for the different colour centers; the short (x,y)‐ellipse axis in some cases is not correlated with a perceptual hue vector component, and the main lightness direction sometimes is tilted in relation to the (x,y)‐plane. Three colour‐difference formulae do not provide better global predictions than the local (x,y,Y)‐ellipsoid formulae. The results may be used for more detailed modeling of colour‐difference formulae and for tolerance settings at different ranges of colour difference. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 78–92, 1999  相似文献   

4.
A grey‐scale psychophysical experiment was carried out for evaluating colour differences using printed colour patches. In total, 446 pairs of printed samples were prepared surrounding 17 colour centers recommended by the CIE with an average δE of 3 units. Each pair was assessed 27 times by nine observers. The visual results were used to test some selected more advanced colour‐difference formulae and uniform colour spaces. The results showed that CIELAB and OSA performed the worst, and the advanced formulae and spaces gave quite satisfactory performance such as CIEDE2000, CIE94, DIN99d, CAM02‐UCS, and OSA‐GP‐Eu. The colour discrimination ellipses were used to compare with those of the earlier studies. The results showed that they agreed well with each other. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

5.
The effect of surface texture on the pass/fail colour tolerance region was estimated using acrylonitrile–butadiene–styrene injection‐molded plaques in three different colours and with different surface textures. Variations in the measured colour coordinates due to differences in texture for three selected colours were observed using the specular component excluded mode (SCE) of the spectrophotometer. Such variations could not, however, be clearly distinguished in the specular component included mode. The colour tolerance regions were assessed through a combination of colour measurement and a psychometric study involving 35 observers. The limits of acceptance of colour differences varied substantially with the surface texture. In some cases, the observers accepted a larger colour difference for the textured than for the smooth surface, whereas in other cases, the reverse situation was noted. Thus, no general conclusion regarding the influence of texture on the tolerance region can be drawn, since the acceptable differences were colour‐ and/or surface texture‐dependent. In the case of textured surfaces, measurements made in the SCE mode of the spectrophotometer appear to be more meaningful for assessing perceived colour differences and tolerance regions. © 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 47–54, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20284  相似文献   

6.
Perceived colour differences of 17 test colour samples (uniform standalone patches) were evaluated visually between a test and a reference light source on three visual scales. Two graphical rating scales (a greyscale‐anchored colour difference scale and a similarity judgement scale) and a five‐step ordinal rating scale (excellent, good, acceptable, not acceptable or very bad colour rendering) were used. The experimental setup included tungsten halogen, gas discharge, fluorescent, and white LED light sources at two correlated colour temperatures, 2700 and 4500 K. There was an inverse relationship between similarity judgement and visual colour difference results. Each category of the five‐step ordinal rating scale had a characteristic mean visual colour difference value. Visual colour differences correlated best with the recently developed CIECAM02‐UCS colour difference metric. Latter metric was used to predict the observers' ratings of visual colour differences on the above five‐step ordinal rating scale. From the predicted ratings of 17 test‐colour samples under the test light source, a new ordinal rating scale based colour rendering index (RCRI) was defined and compared with previous colour rendering indices. RCRI correlated well with both the mean visual colour differences and the mean similarity judgements. Despite the significant interobserver differences of the visual assessment of colour differences, the RCRI method showed an overall performance of 73% in terms of good predictions of the rating categories. Validation experiments with complex still life (tabletop) stimuli are currently underway. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

7.
This work is concerned with the prediction of visual colour difference between pairs of palettes. In this study, the palettes contained five colours arranged in a horizontal row. A total of 95 pairs of palettes were rated for visual difference by 20 participants. The colour difference between the palettes was predicted using two algorithms, each based on one of six colour-difference formulae. The best performance (r2 = 0.86 and STRESS = 16.9) was obtained using the minimum colour-difference algorithm (MICDM) using the CIEDE2000 equation with a lightness weighing of 2. There was some evidence that the order (or arrangement) of the colours in the palettes was a factor affecting the visual colour differences although the MICDM algorithm does not take order into account. Application of this algorithm is intended for digital design workflows where colour palettes are generated automatically using machine learning and for comparing palettes obtained from psychophysical studies to explore, for example, the effect of culture, age, or gender on colour associations.  相似文献   

8.
This study investigates harmony in two‐colour combinations in order to develop a quantitative model. A total of 1431 colour pairs were used as stimuli in a psychophysical experiment for the visual assessment of harmony. These colour pairs were generated using 54 colours selected systematically from CIELAB colour space. During the experiment, observers were presented with colour pairs displayed individually against a medium gray background on a cathode ray tube monitor in a darkened room. Colour harmony was assessed for each colour pair using a 10‐category scale ranging from “extremely harmonious” to “extremely disharmonious.” The experimental results showed a general pattern of two‐colour harmony, from which a quantitative model was developed and principles for creating harmony were derived. This model was tested using an independent psychophysical data set and the results showed satisfactory performance for model prediction. The study also discusses critical issues including the definition of colour harmony, the relationship between harmony and pleasantness, and the relationship between harmony and order in colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 191–204, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20208  相似文献   

9.
Most of the colour‐difference formulae were developed to fit data sets having a limited range of colour‐difference magnitudes. Hence, their performances are uncertain when applying them to a range of colour differences from very small to very large colour differences. This article describes an experiment including three parts according to the colour‐difference magnitudes: large colour difference (LCD), small colour difference (SCD), and threshold colour difference (TCD) corresponding to mean ΔE values of 50.3, 3.5, and 0.6, respectively. Three visual assessment techniques were used: ratio judgement, pair comparison, and threshold for LCD, SCD, and TCD experiments, respectively. Three data sets were used to test six colour‐difference formulae and uniform colour spaces (CIELAB, CIE94, CIEDE2000, CAM02‐SCD, CAM02‐UCS, and CAM02‐LCD). The results showed that all formulae predicted visual results with great accuracy except CIELAB. CIEDE2000 worked effectively for the full range of colour differences, i.e., it performed the best for the TCD and SCD data and reasonably well for the LCD data. The three CIECAM02 based colour spaces gave quite satisfactory performance. © Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

10.
Eleven colour‐emotion scales, warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, harmonious–disharmonious, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike, were investigated on 190 colour pairs with British and Chinese observers. Experimental results show that gender difference existed in masculine–feminine, whereas no significant cultural difference was found between British and Chinese observers. Three colour‐emotion factors were identified by the method of factor analysis and were labeled “colour activity,” “colour weight,” and “colour heat.” These factors were found similar to those extracted from the single colour emotions developed in Part I. This indicates a coherent framework of colour emotion factors for single colours and two‐colour combinations. An additivity relationship was found between single‐colour and colour‐combination emotions. This relationship predicts colour emotions for a colour pair by averaging the colour emotions of individual colours that generate the pair. However, it cannot be applied to colour preference prediction. By combining the additivity relationship with a single‐colour emotion model, such as those developed in Part I, a colour‐appearance‐based model was established for colour‐combination emotions. With this model one can predict colour emotions for a colour pair if colour‐appearance attributes of the component colours in that pair are known. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 292–298, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20024  相似文献   

11.
Psychophysical experiments were conducted in the UK, Taiwan, France, Germany, Spain, Sweden, Argentina, and Iran to assess colour emotion for two‐colour combinations using semantic scales warm/cool, heavy/light, active/passive, and like/dislike. A total of 223 observers participated, each presented with 190 colour pairs as the stimuli, shown individually on a cathode ray tube display. The results show consistent responses across cultures only for warm/cool, heavy/light, and active/passive. The like/dislike scale, however, showed some differences between the observer groups, in particular between the Argentinian responses and those obtained from the other observers. Factor analysis reveals that the Argentinian observers preferred passive colour pairs to active ones more than the other observers. In addition to the cultural difference in like/dislike, the experimental results show some effects of gender, professional background (design vs. nondesign), and age. Female observers were found to prefer colour pairs with high‐lightness or low‐chroma values more than their male counterparts. Observers with a design background liked low‐chroma colour pairs or those containing colours of similar hue more than nondesign observers. Older observers liked colour pairs with high‐lightness or high‐chroma values more than young observers did. Based on the findings, a two‐level theory of colour emotion is proposed, in which warm/cool, heavy/light, and active/passive are identified as the reactive‐level responses and like/dislike the reflective‐level response. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

12.
In an earlier article the authors related visually‐ scaled large colour differences to ΔE* values calculated using four colour‐difference formulae. All four metrics yielded linear regressions from plots of visual colour difference against ΔE*, and ΔE gave the best linear fit, but the correlations were rather low. In an effort to clarify matters, the previous investigation is expanded to include data not hitherto examined. The link between visual colour difference and ΔE* colour metrics is further explored in terms of a power law relationship over a wide range of lightness, hue, and chroma variations within CIELAB colour space. It is shown that power‐law fits are superior to linear regressions in all cases, although correlations over large regions of the colour space are not very high. Partitioning of the experimental results to give reduced data sets in smaller regions is shown to improve correlations markedly, using power‐law fits. Conclusions are drawn concerning the uniformity of CIELAB space in the context of both linear and power‐law behavior. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 116–122, 2000  相似文献   

13.
Visual evaluation experiments of color discrimination threshold and suprathreshold color‐difference comparison were carried out using CRT colors based on the psychophysical methods of interleaved staircase and constant stimuli, respectively. A large set of experimental data was generated ranged from threshold to large suprathreshold color difference at the five CIE color centers. The visual data were analyzed in detail for every observer at each visual scale to show the effect of color‐difference magnitude on the observer precision. The chromaticity ellipses from this study were compared with four previous published data, of CRT colors by Cui and Luo, and of surface colors by RIT‐DuPont, Cheung and Rigg, and Guan and Luo, to report the reproducibility of this kind of experiment using CRT colors and the variations between CRT and surface data, respectively. The present threshold data were also compared against the different suprathreshold data to show the effect of color‐difference scales. The visual results were further used to test the three advance color‐difference formulae, CMC, CIE94, and CIEDE2000, together with the basic CIELAB equation. In their original forms or with optimized KL values, the CIEDE2000 outperformed others, followed by CMC, and with the CIELAB and CIE94 the poorest for predicting the combined dataset of all color centers in the present study. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 198–208, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20106  相似文献   

14.
An experimental approach is described for measuring colour discrimination thresholds of human observers. Special software was developed for the accurate display of colour pairs on a high resolution CRT, using serial feedback from a spectroradiometer. Discrimination thresholds between a test and a target colour are determined by repeatedly showing an observer a circle composed of four separate quadrants, one of which has a different colour from the other three. Three quadrants are of the test colour and one of the target colour, or vice versa. Observers are asked to select the quadrant that differs from the others. An experiment is described where hue‐dependent effects affecting hue discrimination are investigated. Eighteen hue threshold values around the hue circle, at constant L = 51 and C = 25, were measured for three observers. Hue thresholds were found to vary around the hue circle, exhibiting an abrupt change in the blue to purple region (240° ≤ hab,10 = 300°) This change is not fully accounted for by any CIELAB‐based colour difference formula, including the most recent CIEDE2000 formula. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 410–415, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20153  相似文献   

15.
The formulation of a metric to provide numbers that correlate with visually perceived colour differences has proved a very difficult task. Most early experimental work was concerned with just-perceptible colour differences. Later the concept of perceptibility was expanded to acceptability, it being argued that many industrial tolerances were larger than just-perceptible. This led naturally to the concept of large colour differences and the question as to whether the current CIE colour-difference formulae, specified as appropriate for just-perceptible differences, can be applied to larger differences than those concerned with, for instance, colour matches experienced in the fabric dyeing industry. This article investigates the application of four colour-difference formulae to visual scaling of large colour differences between photographically prepared reflection colour samples at approximately constant lightness. It is shown that the scaling of colour differences depends on the directions of hue and chroma differences of a test sample when compared with a reference. It is also shown that, of the four candidate colour-difference metrics, the modified CIE 1976 L*a*b* colour difference, referred to as CIE1994 or , correlates best with visual scaling. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 298–307, 1997  相似文献   

16.
Skin‐tone has been an active research subject in photographic colour reproduction. There is a consistent conclusion that preferred skin colours are different from actual skin colours. However, preferred skin colours found from different studies are somewhat different. To have a solid understanding of skin colour preference of digital photographic images, psychophysical experiments were conducted to determine a preferred skin colour region and to study inter‐observer variation and tolerance of preferred skin colours. In the first experiment, a preferred skin colour region is searched on the entire skin colour region. A set of nine predetermined colour centers uniformly sampled within the skin colour ellipse in CIELAB a*b* diagram is used to morph skin colours of test images. Preferred skin colour centers are found through the experiment. In a second experiment, a twice denser sampling of nine skin colour centers around the preferred skin colour center determined in the first experiment are generated to repeat the experiment using a different set of test images and judged by a different panel of observers. The results from both experiments are compared and final preferred skin colour centers are obtained. Variations and hue and chroma tolerances of the observer skin colour preference are also analysed. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2013  相似文献   

17.
Several colour‐difference formulas such as CMC, CIE94, and CIEDE2000 have been developed by modifying CIELAB. These formulas give much better fits for experimental data based on small colour differences than does CIELAB. None of these has an associated uniform colour space (UCS). The need for a UCS is demonstrated by the widespread use of the a*b* diagram despite the lack of uniformity. This article describes the development of formulas, with the same basic structure as the DIN99 formula, that predict the experimental data sets better than do the CMC and CIE94 colour‐difference formulas and only slightly worse than CIEDE2000 (which was optimized on the experimental data). However, these formulas all have an associated UCS. The spaces are similar in form to L*a*b*. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 282–290, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10066  相似文献   

18.
Ninety‐six nylon pairs were prepared, including red, yellow, green, and blue standards, each at two lightness levels with CIE94 ΔE units ranging from 0.15 to 4.01. Visual assessments of acceptability were carried out by 21 females. Logistic regression compared visual results to four color‐difference equations, CIELAB, CMC, CIE94, and CIEDE2000. It was found that CMC most closely represented judgments of average observers. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 288–294, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20124  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号