首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water absorption behavior of different types of organophilic montmorillonite (OMMT)‐filled polyamide 6/polypropylene nanocomposites with and without compatibilizers (maleated PP or PP‐g‐MA and maleated styrene‐ethylene/butylene‐styrene or SEBS‐g‐MA) was evaluated. Four different types of OMMT, i.e., dodecylamine‐modified MMT (D‐MMT), 12 aminolauric acid‐modified MMT (A‐MMT), stearylamine‐modified MMT (S‐MMT), and commercial organo‐MMT (C‐MMT) were used as reinforcement. The water absorption response of the nanocomposites was studied and analyzed by tensile test and morphology assessment by scanning electron microscopy (SEM). The kinetics of water absorption of the nanocomposites conforms to Fick's law. The Mm and D are dependent on the types of OMMT and compatibilizers. The equilibrium water content and diffusivity of PA6/PP blend were increased by the addition of OMMT but decreased in the presence of compatibilizers. On water absorption, both strength and stiffness of the nanocomposites were drastically decreased, but the ductility was remarkably increased. Both PP‐g‐MA and SEBS‐g‐MA played an effective role as compatibilizers for the nanocomposites. This was manifested by their higher retention ability in strength and stiffness (in the wet and re‐dried states), reduced the equilibrium water content, and diffusivity of the nanocomposites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
Polypropylene/polypropylene‐grafted‐maleic anhydride/glass fiber reinforced polyamide 66 (PP/PP‐g‐MAH/GFR PA 66) blends‐composites with and without the addition of polypropylene‐grafted‐maleic anhydride (PP‐g‐MAH) were prepared in a twin screw extruder. The effect of the compatibilizer on the thermal properties and crystallization behavior was determined using differential scanning calorimetry analysis. The hold time was set to be equal to 5 min at 290°C. These conditions are necessary to eliminate the thermomechanical history in the molten state. The crystallization under nonisothermal conditions and the plot of Continuous‐Cooling‐Transformation of relative crystallinity diagrams of both PP and PA 66 components proves that PP is significantly affected by the presence of PP‐g‐MAH. From the results it is found that an abrupt change is observed at 2.5 wt % of PP‐g‐MAH as a compatibilizer and then levels off. In these blends, concurrent crystallization behavior was not observed for GFR PA66. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1620–1626, 2007  相似文献   

3.
In this study, poly(ethylene terephthalate)/organo‐montmorillonite (PET/OMMT) nanocomposites were melt‐compounded using twin screw extruder followed by injection molding. Maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) was used to improve the impact properties of the PET/OMMT nanocomposites. The notched and un‐notched impact strength of PET/OMMT nanocomposites increased at about 2.5 times and 5.5 times by the addition of 5 wt % of SEBS‐g‐MAH. Atomic force microscopy (AFM) scans were taken from the polished surface of both PET/OMMT and SEBS‐g‐MAH toughened PET/OMMT nanocomposites. The addition of SEBS‐g‐MAH altered the phase structure and clay dispersion in PET matrix. It was found that some of the OMMT silicate layers were encapsulated by SEBS‐g‐MAH. Further, the addition of SEBS‐g‐MAH decreased the degree of crystallinity of the PET/OMMT nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
The electron‐beam preirradiation and reactive extrusion technologies were used to prepare maleic anhydride (MAH)/vinyltrimethoxysilane (VTMS)‐co‐grafting polypropylene (PP) as a high‐performance compatibilizer for wood‐flour/PP composites. The grafting content, chemical structure, and crystallization behavior of the compatibilizers were characterized through Fourier transform infrared spectroscopy, differential scanning calorimetry, and an extraction method. The effects of the compatibilizers on the mechanical properties, water absorption, morphological structure, and torque rheological behavior of the composites were investigated comparatively. The experimental results demonstrate that MAH/VTMS‐g‐PP markedly enhanced the mechanical properties of the composites. Compared with MAH‐g‐PP and VTMS‐g‐PP, MAH/VTMS‐g‐PP clearly showed synergistic effects on the increasing mechanical properties, water absorption, and compatibility of the composites. Scanning electron microscopy further confirmed that the adhesion and dispersion of wood flours in the composites were effectively improved by MAH/VTMS‐g‐PP. These results were also proven by the best water resistance of the wood‐flour/PP composites with MAH/VTMS‐g‐PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Nanocomposites of low‐density polyethylene/polyhydroxybutyrate (LDPE/PHB) containing organomodified montmorillonite (OMMT) and/or LDPE grafted maleic anhydride (LDPE‐g‐MAH) were prepared with a wide range of composition ratios using a vertical co‐rotating twin‐screw microCompounder. To infer the effect of OMMT and LDPE‐g‐MAH on the thermal stability of prepared nanocomposites, all samples were characterized by thermogravimetric analysis while changing clay and compatibilizer contents. Accordingly, two commonly used kinetic models (Coats–Redfern and Horowitz–Metzger) were employed to correlate the thermal stability of the samples with kinetic parameters, including activation energy and pre‐exponential factor. Furthermore, morphological features of LDPE/PHB in the presence or absence of OMMT and LDPE‐g‐MAH were studied using scanning electron microscopy, transmission electron microscopy, and wide‐angle X‐ray diffraction analysis. It was found that for a specific OMMT composition ratio (1 wt %), the thermal stability is enhanced due to an exfoliated structure. However, for samples containing more organoclay (>=3 wt %), the thermal stability was reduced showing the competition between the barrier effect of organoclay platelets and the catalyzing effect of ammonium salts. Moreover, when using LDPE‐g‐MAH as compatibilizer, it acted as a good coupling agent in all compositions in LDPE major phase systems in contrast to PHB major phase samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45922.  相似文献   

6.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
In this study, polypropylene (PP)/clay nanocomposites containing different concentrations of ethylene‐methacrylic acid ionomer (i.e. Surlyn®) were prepared, and the effect of ionomer on clay dispersion was studied via WAXD, rheology, SEM, and TEM. The role of the ionomer in the nanocomposites was compared with that of maleic anhydride grafted PP (PP‐g‐MA), which has been widely used as a compatibilizer in making PP/clay nanocomposites. With an increase in the concentration of compatibilizer, the position of d001 peak of OMMT shifted toward a lower angle for PP‐g‐MA system, while the position remained almost unchanged for Surlyn system, in which a larger interlayer spacing (d001) was found with respect to the former. In rheology, the addition of the ionomer led to a gradual increase in both moduli and complex viscosity, and the nonterminal behavior at low frequency was observed in both systems. In addition, the ternary hybrid containing 20 wt % Surlyn achieved the largest enhancement in relative viscosity, which was more than that of the nanocomposite prepared from pure Surlyn or pure PP, presumably indicative of the existence of strong interaction between the components. Finally, SEM and TEM micrographs demonstrated that exfoliated structure was preferred for PP/Surlyn/OMMT hybrids, while intercalated morphology for PP/PP‐g‐MA/OMMT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4024–4034, 2007  相似文献   

9.
The mechanical and thermomechanical properties as well as microstructures of polypropylene/nylon 6/clay nanocomposites prepared by varying the loading of PP‐MA compatibilizer and organoclay (OMMT) were investigated. The compatibilizer PP‐MA was used to improve the adhesion between the phases of polymers and the dispersion of OMMT in polymer matrix. Improvement of interfacial adhesion between the PP and PA6 phases occurred after the addition of PP‐MA as confirmed by SEM micrographs. Moreover, as shown by the DSC thermograms and XRD results, the degree of crystallinity of PA6 decreased in the presence of PP‐MA. The presence of OMMT increased the tensile modulus as a function of OMMT loading due to the good dispersion of OMMT in the matrix. The insertion of polymer chains between clay platelets was verified by both XRD and TEM techniques. The viscosity of the nanocomposites decreased as PP‐MA loading increased due to the change in sizes of PA6 dispersed phase, and the viscosity increased as OMMT loading increased due to the interaction between the clay platelets and polymer chains. The clay platelets were located at the interface between PP and PA6 as confirmed by both SEM and TEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Polypropylene (PP) and polypropylene/polypropylene‐g‐maleic anhydride/ organomontmorillonite (PP/PP‐g‐MA/OMMT) nanocomposites were modified with 0.05 to 0.3% (w/w) of the aryl amide β‐nucleator to promote the formation of hexagonal crystal modification (β‐phase) during melt crystallization. The nonisothermal crystallization behavior of PP, PP/PP‐g‐MA/OMMT and β‐nucleated PP/PP‐g‐MA/OMMT nanocomposites were studied by means of differential scanning calorimetry. Structure‐property relationships of the PP nanocomposites prepared by melt compounding were mainly focused on the effect and quantity of the aryl amide nucleator. The morphological observations, obtained from scanning electron microscopy, transmission electron microscopy and X‐ray diffraction analyses are presented in conjunction with the thermal, rheological, and mechanical properties of these nanocomposites. Chemical interactions in the nanocomposites were observed by FT‐IR. It was found that the β‐crystal modification affected the thermal and mechanical properties of PP and PP/PP‐g‐MA/OMMT nanocomposites, while the PP/PP‐g‐MA/OMMT nanocomposites of the study gained both a higher impact strength (50%) and flexural modulus (30%) compared to that of the neat PP. β‐nucleation of the PP/PP‐g‐MA/OMMT nanocomposites provided a slight reduction in density and some 207% improvement in the very low tensile elongation at break at 92% beta nucleation. The crystallization peak temperature (Tcp) of the PP/PP‐g‐MA/OMMT nanocomposite was slightly higher (116°C) than the neat PP (113°C), whereas the β‐nucleation increased the crystallization temperature of the PP/PP‐g‐MA/OMMT/aryl amide to 128°C, which is of great advantage in a commercial‐scale mold processing of the nanocomposites with the resulting lower cycle times. The beta nucleation of PP nanocomposites can thus be optimized to obtain a better balance between thermal and mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

11.
Polypropylene (PP)/polystyrene‐block‐poly(ethylene‐co‐butylenes)‐block‐polystyrene (SEBS)/organo‐montmorillonite (OMMT) nanocomposites of varying concentrations of maleic anhydride‐grafted polypropylene (PP‐g‐MA) were prepared by continuous mixing assisted by ultrasonic oscillation. The structure and morphology of nanocomposites were investigated by X‐ray diffraction (XRD), transmission electron microscopy, and scanning electron microscopy. It was found that both PP‐g‐MA and ultrasonic oscillation could enhance the intercalation and exfoliation of OMMT in PP matrix. Meanwhile, the formation of PP could be induced by ultrasonic irradiation at a power of more than 540 W. Rheological properties including complex viscosity, storage, and loss modulus of nanocomposites were increased after adding PP‐g‐MA or ultrasonic treatment. The results of mechanical properties showed that PP‐g‐MA could improve the tensile strength and tensile modulus of nanocomposites, but with the sacrifice of impact strength. This problem could be improved by ultrasound due to the reduced particle size of SEBS. However, the mechanical properties would be reduced by ultrasonic treatment with higher intensity due to the polymer degradation. Therefore, the synergistic effect of both compatibilizer and ultrasound should account for the balance between toughness and stiffness of PP/SEBS/OMMT ternary nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41202.  相似文献   

12.
Polyamide 6 (PA6)/maleated ethylene–propylene–diene rubber (EPDM‐g‐MA)/organoclay (OMMT) composites were melt‐compounded through two blending sequences. Glycidyl methacrylate (GMA) was used as a compatibilizer for the ternary composites. The composite prepared through via the premixing of PA6 with OMMT and then further melt blending with EPDM‐g‐MA exhibited higher impact strength than the composite prepared through the simultaneous blending of all the components. However, satisfactorily balanced mechanical properties could be achieved by the addition of GMA through a one‐step blending sequence. The addition of GMA improved the compatibility between PA6 and EPDM‐g‐MA, and this was due to the reactions between PA6, EPDM‐g‐MA, and GMA, as proved by Fourier transform infrared analysis and solubility (Molau) testing. In addition, OMMT acted as a compatibilizer for PA6/EPDM‐g‐MA blends at low contents, but it weakened the interfacial interactions between PA6 and EPDM‐g‐MA at high contents. Both OMMT and GMA retarded the crystallization of PA6. The complex viscosity, storage modulus, and loss modulus of the composites were obviously affected by the addition of OMMT and GMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
To improve the mechanical properties of blends of polypropylene (PP) and terpolymer of ethylene–propylene–diene (EPDM), a triblock copolymer, (PP‐g‐MAH)‐co‐[PA‐6,6]‐co‐(EPDM‐g‐MAH), was synthesized by coupling reaction of maleic anhydride (MAH)‐grafted PP (PP‐g‐MAH), EPDM‐g‐MAH, and PA‐6,6. The newly prepared block copolymer brought about a physical interlocking between the blend components, and imparted a compatibilizing effect to the blends. Introducing the block copolymer to the blends up to 5 wt % lead to formation of a β‐form crystal. The wide‐angle X‐ray diffractograms measured in the region of 2θ between 10° and 50° ascertained that incorporating the block copolymer gave a new peak at 2θ = 15.8°. The new peak was assigned to the (300) plane spacings of the β‐hexagonal crystal structure. In addition, the block copolymer notably improved the low‐temperature impact property of the PP/EPDM blends. The optimum usage level of the compatibilizer proved to be 0.5 wt %. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1267–1274, 2000  相似文献   

15.
Role of maleic anhydride grafted polypropylene (PP‐g‐MAH) in interface modification in polypropylene (PP)/poly(dimethylsiloxane) (PDMS) elastomer blend has been investigated in this article through its effects on morphology of dispersion, micromechanical deformations such as voiding, crazing, shear yielding, fibrillation, and tensile behavior. During tensile deformation, PP/PDMS blend without the compatibilizer showed debonding at the elastomer‐matrix interface and it induced shear yielding and subsequently fibrillation in the matrix. The compatibilizer improved the interfacial adhesion between the PDMS domains and PP matrix, which prevented the debonding at elastomer‐matrix interface and the resulting shear yielding, and fibrillation was absent and rather caused extensive crazing in the matrix. Addition of PP‐g‐MAH reduced the size of dispersed PDMS domains, and narrowed the domain size distribution, which is attributed as an effect of interfacial adhesion produced by PP‐g‐MAH. Stress–strain curve and fibrillation also show similar effect of the interfacial adhesion caused by the compatibilizer. All these observations consistently lead to conclude that PP‐g‐MAH acts as a good compatibilizer for PP/PDMS blend. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
In the present study, the fracture properties of different types of organophilic montmorillonite (OMMT) filled polyamide 6/polypropylene nanocomposites was investigated. Two types of compatibilizers, i.e., maleic anhydride grafted polypropylene (PP‐g‐MA) and maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MA) were used to compatibilize these systems. The tensile properties were studied through tensile test at two different testing speeds; 50 and 500 mm/min whereas the fracture properties were determined using single‐edge‐notch‐3 point‐bending (SEN‐3PB) specimens at three different testing speeds; 1, 100, and 500 mm/min. The presence of both PP‐g‐MA and SEBS‐g‐MA compatibilizers improved the tensile and fracture properties of nanocomposites due to the compatibilizing effect of both compatibilizers. SEBS‐g‐MA compatibilizer seemed to be more effective in improving the fracture toughness of nanocomposites than PP‐g‐MA especially at high testing speed. This was due to the elastomeric nature of SEBS‐g‐MA, which can provide a better toughening effect than the relatively harder PP‐g‐MA. POLYM. ENG. SCI., 50:1493–1504, 2010. © 2010 Society of Plastics Engineers  相似文献   

17.
This article presents the study of the modification of the particle/matrix interface region and its effects on the structure and dynamic mechanical behavior of polypropylene (PP)/hydrotalcite nanocomposites prepared by melt extrusion. The interface modification was promoted by combinying the organophillization of the hydrotalcite particles with blending the PP with a maleic anhydride‐grafted‐PP (PP‐g‐MAH) or a maleic anhydride‐grafted‐poly(styrene‐co‐ethylenebutylene‐co‐styrene) (SEBS‐g‐MAH). Sodium dodecyl sulphate was used to promote the organophillization of the hydrotalcite particles. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) showed a partially exfoliated hydrotalcite structure, with an increasing exfoliation being achieved by adding a compatibilizer and organo‐modifying the particles. Values of the Young's modulus (E), storage modulus (E′), maximum tensile strength (σmax), neck propagation strength (σneck), and elongation at break (εb) were found to depend both on the nature of the particle matrix interface as well as on the type of compatibilizer. Also, nanocomposites prepared with the organophillized particles showed lower Tg and loss factor values. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

18.
Among modified Poly(propylene)s (PPs) grafted with polar monomers, PP grafted with maleic anhydride (PP-g-MAH) is known to be the most efficient compatibilizer for PP/clay nanocomposites, since it provides well-dispersed nanostructures and yields optimal physical properties of the nanocomposites. One drawback of this material, however, is that it becomes brittle and its viscosity decreases drastically, leading to nanocomposites with low toughness as the graft degree of MAH increases. Therefore, there is a limitation to increasing both stiffness and toughness of PP/clay nanocomposites with PP-g-MAH. In this study, we investigated the performance of a PP grafted with maleic anhydride and styrene (PP-g-MAH-St) as compatibilizers in PP/clay nanocomposites. It was found that the incorporation of styrene as a comonomer prevents molecular weight reduction of the PP main chain upon high loading of a radical initiator for high graft degree of MAH. The compatibilizers (PP-g-MAH-St) thus obtained show good compatibilizing performance in PP/clay nanocomposites. The PP/clay nanocomposites compatibilized by PP-g-MAH-St show both high stiffness and toughness, which is accomplished by using a compatibilizer of higher viscosity compared with PP-g-MAH.  相似文献   

19.
The aim of this work was to study the effect of functionalized single‐walled carbon nanotubes (f‐SWCNTs) on the microstructure of PP‐g‐MA/organic modified montmorillonite (OMMT)/f‐SWCNTs ternary nanocomposite. Pristine SWCNTs were chemically modified by maleic anhydride to improve the interaction between PP‐g‐MA and nanotubes. The dispersion states of OMMT in the different nanocomposites were investigated by wide angle X‐ray diffraction. The morphologies of the nanocomposites were characterized by scanning electron microscopy. Crystallization behaviors of nanocomposites were studied through differential scanning calorimetry and polarizing optical microscopy. Different than the PP‐g‐MA/OMMT binary nanocomposite, in which the OMMT is mainly in an exfoliated state, the ternary PP‐g‐MA/OMMT/f‐SWCNTs nanocomposite exhibits mostly intercalated OMMT. Furthermore, in the ternary nanocomposite, the crystallization of polymer is mainly induced by f‐SWCNTs rather than by OMMT. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The effects of hygrothermal aging history and initial water content on sorption behavior and the physical properties of a commercial particle‐filled epoxy‐based adhesive were studied by the analysis of the water reabsorption process. ATR‐FTIR analysis was performed to characterize the hydrogen bond interactions among the water and either resin or fillers. Swelling behavior and the depression of the glass transition temperature (Tg) under different hygrothermal aging histories were related to the water in the apparent free volume of the adhesive. The results show that the water diffusion of the adhesive is a non‐Fickian process. It is also observed that swelling (which is reversible and consistent with hydrogen bond formation) and the rate of diffusion are not only dependent on the hygrothermal temperature but also the hygrothermal history. In addition, the swelling observed on the reabsorption process does not alter the apparent free volume of this adhesive system, and Tg depression is independent of the final equilibrium water content of the system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1581–1591, 2002; DOI 10.1002/app.10447  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号