首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
研究了板坯加热温度、退火温度以及冷轧道次加工率对AZ31变形镁合金轧制能力的影响.结果表明,当加热温度为350℃,轧制速度为0.4m/s时,AZ31镁合金板材的热轧道次极限加工率可以达到34.62%(无裂纹)和59.23%(无表面裂纹);将热轧态板材分别在250℃~350℃温度,退火40min后,板材显微组织中晶粒大小均匀,维持在5μm~6μm水平;板材具有良好的综合力学性能,其抗拉强度为:230Pa~240MPa,屈服强度为:135MPa~175MPa,延伸率为:12%~15%.当采用350℃×40min退火后,板材在冷轧道次加工率为5%~10%时,总加工率可以达到40%以上.  相似文献   

2.
综述了AZ31镁合金塑性变形理论研究的最新成果;介绍了近年来AZ31镁合金轧制、挤压和锻造等塑性加工技术的研究进展;展望了AZ31镁合金的发展方向,指出应该加强AZ31镁合金基础理论、成形技术和镁基复合材料的研究。  相似文献   

3.
镁合金塑性加工技术的研究进展   总被引:1,自引:0,他引:1  
镁合金由于优异的综合性能而广泛应用于航天航空、汽车和3C等领域,但是镁合金常温下塑性较差限制其发展。在综述变形温度、晶粒尺寸和应变速率对镁合金塑性变形能力影响的基础上,详细介绍了镁合金轧制成形、挤压成形、锻造成形、超塑性成形及铸轧成形的最新研究成果,并指出镁合金塑性加工技术的发展方向。  相似文献   

4.
轧制路径对AZ31镁合金薄板组织性能的影响   总被引:1,自引:1,他引:1  
研究了异步轧制路径对AZ31镁合金板材的金相组织和性能的影响。结果表明,以每道次轧制方向旋转180°而板正法向不变的路径轧制时,板材的金相显微组织较好,晶粒细小(约为20μm),孪晶少,伸长率达到26%,并且板材的屈服强度、应变硬化指数较高;而按每道次板材轧制方向和板正法向均旋转180°的路径轧制时,板材的塑性应变比值最大。这说明异步轧制路径对AZ31镁合金性能的影响是比较复杂的,应该综合考虑异步轧制工艺条件的影响,通过工艺优化提高异步轧制AZ31镁合金板材的冲压成形能力。  相似文献   

5.
采用半连铸法制备了AZ31B镁合金板坯,研究了化学成分、杂质含量及均匀化退火工艺对AZ31B变形镁合金板材组织和性能的影响,通过冲断试验对试验板坯的宏观断口进行了分析.结果表明,所制备AZ31B镁合金板坯中的Mn、Fe元素含量超标导致板坯出现粗大柱状晶以及金属间化合物等缺陷,因此该成分的板坯只适合轧制中厚度的板材.该合金板坯采用阶段均匀化退火制度(380℃×8 h 420℃×6 h),改一火多道次轧制工艺为多火多道次,可轧制出8 mm厚板材,其力学性能达到相应标准要求.  相似文献   

6.
塑性变形对AZ31镁合金晶粒细化的影响   总被引:2,自引:1,他引:1  
利用6300kN液压机通过挤压的方法研究了塑性变形对AZ31镁合金晶粒细化的影响.实验表明:挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能;随挤压比的增大,晶粒细化程度增加,金属的协调变形能力增加,塑性增加;并且通过适当控制成形温度,平均品粒直径可控制在3~5μm之内.  相似文献   

7.
实验研究了经不同道次差温热轧AZ31镁合金的金相组织,结合对轧制过程,尤其是轧件温度场的数值模拟结果,分析了AZ31镁合金差温热轧过程晶粒细化机制与主要影响因素,获得了通过轧制过程动态再结晶,使轧材晶粒尺寸随轧制道次增加,而持续细化的工艺参数,并制备出平均晶粒尺寸为5μm左右的细晶AZ31镁合金板材。  相似文献   

8.
变形工艺对AZ31B镁合金薄板组织及力学性能的影响   总被引:2,自引:1,他引:2  
将不同厚度的AZ31B镁合金挤压坯经多道次和单道次两种轧制工艺制备成厚度约为1 mm的薄板.XRD结果表明,轧板出现了明显(0001)面织构.挤压和轧制过程中的大变形促使了再结晶的发生,进而形成了细小且均匀的显微组织.多道次轧制的最薄轧板中获得了尺寸为5-10 μm的等轴晶.细小的再结晶晶粒使材料的强度和塑性得到了改善.多道次轧板的拉伸强度达到了292MPa,其伸长率为单道次轧制的两倍.  相似文献   

9.
采用Gleeble-3500热模拟试验机对AZ31镁合金挤压板坯进行平面应变压缩实验,研究镁合金二次变形条件下的热变形行为。结果表明,AZ31镁合金挤压板坯二次变形中发生明显的动态再结晶,进一步细化了再结晶晶粒,且二次变形削弱了挤压板坯的(0002)基面织构强度。DEFORM 3D有限元模拟结果表明,当应变速率一定时,变形温度是决定再结晶晶粒大小的主要因素,而当变形温度一定时,高应变速率所引起的显著温升不利于应变累积,因而再结晶晶粒细化效果并不明显。  相似文献   

10.
对AZ31镁合金铸轧板材进行了不同初轧温度的多道次不同路径轧制试验。通过显微组织观察、室温拉伸试验研究了不同初轧温度和轧制路径对AZ31镁合金板材的组织和性能的影响。结果表明:在300~450℃,随着初轧温度的升高,AZ31镁合金板材试样平均晶粒尺寸逐渐增大,初轧温度达到450℃时,晶粒发生明显长大。相同初轧温度下,轧制方向交替变化轧制的AZ31镁合金板材试样比单向轧制试样晶粒更为细小。随着初轧温度的升高,试样的抗拉强度和屈服强度逐渐降低,伸长率先降低后升高。采用轧制方向交替变化轧制的AZ31镁合金板材具有更优的力学性能。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
吴玉梅  熊晓云  靳蓉  孙敬民  杨林  罗晓星 《金属学报》2005,10(10):1100-1103
目的: 观察本实验室合成的一种治疗阿尔茨海默氏症(AD)的药物(1-二甲基磷酰基-2, 2, 2 -三氯)-乙基-1-醇烟酸醋(NMF),对体外培养的皮层神经细胞活性的影响以及对海人藻酸(KA)所致的神经损伤的保护作用。方法: 采用体外培养皮层神经元的方法,解剖分离 15 d胚胎小鼠皮层神经细胞, 接种于 96孔板,48 h 后加药并培养 72 h,以 MIT 法 观察 NMF 对小鼠皮层神经细胞活性的影响;同时将接种于 24 孔板的细胞预先给予 NMF,d 3 时加或不加KA处理后,以台盼蓝染色鉴别并计数死、活细胞,可得出细胞的存活率。结果: NMF 明显促进胎鼠皮层神经元活性,其中 NMF1、0. 1、10nmol·L-1促进神经元活性增殖率分别高达 34.7%、37.4%、36. 7%, NMF 明显促进正常胎鼠皮层神经元存活卒,与对照组比较,10nmol·L-1 NMF 对皮层神经元的存活率分别提高 39.3%、73.5%。 NMF能显著 对抗 KA 所致的神经元损伤,与 KA 损伤组相比, NMF0.1、10、10nmol·L-1对损伤皮层神经元的保护率分别为 77.30%、80.10%、84.15%。结论: NMF 明 显促进胎鼠皮层神经元的洁性、提高正常皮层神经元,的存活卒,并能有效地保护KA所致的神经元损伤,提示 NMF 是一种很有潜力的治疗 AD 的药物。  相似文献   

16.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

17.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

18.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

19.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

20.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号