首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对供排水车间多台并联工作的离心水泵实际运行参数大大偏离设计工况点的问题,在不更换泵的前提下,分析并联工作的离心水泵特性,通过计算后对三台泵叶轮进行了切割,从而改善泵的运行状况,降低泵的实际电耗。  相似文献   

2.
由于强烈的冲刷腐蚀,采用普通碳钢或一般耐磨钢16Mn制造的离心泵叶轮通常使用寿命只有半年,为延长离心泵的使用寿命,可采用氧化铝工程陶瓷来制造叶轮.作者对某厂料渣泵叶轮最薄弱部位轮彀和叶片的受力和强度进行了分析计算,结果显示:工程氧化铝陶瓷具有一般金属耐磨材料难以比拟的抗磨损性能,完全使用氧化铝陶瓷材料来代替金属材料制造离心泵叶轮,可以保证叶轮在正常工作时有足够的强度;因此,离心泵叶轮陶瓷化在理论上是可行的.  相似文献   

3.
离心泵工程陶瓷叶轮可行性的理论分析   总被引:4,自引:0,他引:4  
由于强烈的冲刷腐蚀,采用普通碳钢或一般耐磨钢16Mn制造的离心泵叶轮通常使用寿命只有半年,为延长离心泵的使用寿命,可采用氧化铝工程陶瓷来制造叶轮.作者对某厂料渣泵叶轮最薄弱部位轮彀和叶片的受力和强度进行了分析计算,结果显示:工程氧化铝陶瓷具有一般金属耐磨材料难以比拟的抗磨损性能,完全使用氧化铝陶瓷材料来代替金属材料制造离心泵叶轮,可以保证叶轮在正常工作时有足够的强度;因此,离心泵叶轮陶瓷化在理论上是可行的.  相似文献   

4.
叶轮泵是常用的一种泵,借助ANSYS workbench建立了叶轮泵装配体模型,建立了接触约束,对该装配体进行了线性静力结构分析,得到了叶轮以及环轴孔泵的外壳在使用中的受力变形和应力分布情况,为后续叶轮泵可靠性分析提供参考.  相似文献   

5.
立式自吸泵的研究   总被引:11,自引:0,他引:11  
介绍了一种叶轮进口朝下,泵进口和吸水管在同一垂直轴线上的新型立式自吸离心泵,该泵的叶轮下方设有一个空气室,用来储存液体,特别适合用在输送腐蚀介质场合替代液下泵工作,文中介绍了这种泵的工作原理,结构及性能。  相似文献   

6.
为了探究动叶轮叶片数对多相混输泵外特性、做功性能和水力特性的影响规律,基于欧拉非均质流模型,利用CFX软件对不同动叶轮叶片数下的多相混输泵在多种流量工况、入口含气率10%的条件下进行数值计算。研究发现:流量在90 m3/h及以下时,动叶轮叶片数对扬程和效率的变化趋势影响相对较小,而随着流量的增加,四叶片动叶轮会使混输泵扬程和效率的下降程度增大;当动叶轮叶片数为3时,多相混输泵的外特性、叶片表面静压分布、载荷分布和水力特性等均优于动叶轮叶片数为4时的性能。本文的研究结果可为多相混输泵动叶轮叶片数的选择提供参考。  相似文献   

7.
烟气轮机结构设计的关键是准确计算叶轮强度。采用数值模拟仿真的方法,通过有限元软件ABAQUS计算叶轮强度,计算内容包括叶轮的动静强度。物理模型选取叶轮的1/66,静强度计算结果显示最大应力发生在叶身底部背弧的中心位置,这与实际运行现场发生断裂故障一致,说明进行叶轮的静强度有限元数值计算时在保证网格质量的前提下必须考虑叶根与榫槽接合面之间非线性接触效应,而且接触部位的网格需用六面体网格。动频数值计算时,分别对2种约束形式下的模型进行计算,结果表明固定叶根情况下动频与考虑接触效应动频之间的差异主要体现在一阶模态上。强度分析表明该型号烟机的叶轮强度满足要求,对烟机叶轮的叶型设计具有指导意义。  相似文献   

8.
随着国家节能减排理念提出,对水环真空泵的应用也提出更高的要求。以300MW机组水环真空泵为例,其水温度在保持运行状态下往往与预期设计额定温度相脱离,很容易造成系统出力不足的情况,要求对系统进行分析以及影响出力不足的因素并采用一定的节能技术进行改造。本文主要对真空泵运行的基本原理与影响叶轮质量的原因、机组真空受冷却系统的影响以及节能技术改造的具体措施进行探析。  相似文献   

9.
为了研究纸浆泵前泵腔间隙大小对纸浆泵外特性以及脉动特性的影响,以SX150-400纸浆泵为模型,在保持其他叶轮几何参数不变的情况下,设计5种不同前泵腔大小的纸浆泵叶轮,利用标准k—ε湍流模型对纸浆泵外特性进行数值模拟并进行了试验验证,分析不同间隙大小对纸浆泵叶轮流道和蜗壳各个断面处压力脉动的影响。结果表明:前泵腔间隙对纸浆泵外特性影响显著,前泵腔间隙B=0.75 mm时效率达到最大值为74%;前泵腔间隙对纸浆泵内非定常流动特性影响也很大,较大的间隙能够有效地改善纸浆泵内的压力脉动特性。  相似文献   

10.
旋喷泵的理论扬程和叶轮的优化设计   总被引:1,自引:0,他引:1  
论述了旋喷泵的理论扬程是叶轮的理论扬程,其集流管的作用是使得叶轮出口液体的动能转变为压力能,根据旋喷泵扬程-流量曲线特点,提出了旋喷泵叶轮的优化设计数学模型、叶轮优化设计方法及水力参数的设计原则,依此方法,进行了实例计算。  相似文献   

11.
水泵叶轮汽蚀现象浅谈   总被引:1,自引:0,他引:1  
从水泵叶轮最常见的汽蚀现象的产生机理入手,分析其对水泵正常工作的危害,根据影响汽蚀性能的系统因素,结合生产实践经验提出了可以有效避免泵的汽蚀故障发生的建议。  相似文献   

12.
采用计算流体力学方法研究比转速为76的定型产品32WB8-12型电机直联旋流泵输送水和不同黏度黏油时的水力性能和内部流动,分析液体黏度对性能曲线、泵水力损失、泵腔内部液体平均旋转角速度的变化,给出3个工况下流量、扬程、效率和叶轮圆盘摩擦损失修正系数与叶轮雷诺数的定量关系式,并与离心泵输送黏油试验数据和现有修正系数换算方法进行详细对比。结果表明:与离心泵相比,旋流泵的叶轮圆盘摩擦损失占轴功率的百分比最多为5%,属低叶轮圆盘摩擦损失泵;液体黏度对流量和效率修正系数影响较小,对扬程修正修正系数影响较大;当叶轮雷诺数不低于1×104时,旋流泵可维持较佳水力性能,适合输送黏度较高的液体;泵腔内存在环流涡,其位置和大小、液体平均角速度大小同黏度有关。  相似文献   

13.
含沙水下粒径对螺旋离心泵磨蚀效应的数值分析   总被引:2,自引:0,他引:2  
为研究含沙水中固相颗粒粒径对螺旋离心泵磨蚀的影响,采用N-S方程和标准k-ε湍流模型对螺旋离心泵的内部流场进行数值模拟计算。结果表明,在含沙量一定时,颗粒的粒径对磨蚀影响显著,且随着粒径的增加,叶轮域的体积浓度梯度变化不均匀,更加促进了磨蚀效应,尤其对叶轮的轮缘磨损最为严重。    相似文献   

14.
对华能上安电厂4#机组的循环水泵进行了节能改造,增大了叶轮的出口宽度,采用了较大的叶轮叶片出、入口宽度比和较小的叶片包角;为了提高泵的水力效率,泵壳体采用流线型设计,同时加大了壳体的通流面积.改造后取得了预期的效果,同改造前相比,4A泵、4B泵效率分别提高了11.20%和13.38%,总输入功率减少了576.3 kW,运行2年即可收回改造投资.  相似文献   

15.
文章介绍了叶轮切削在离心水泵机组节能改造的应用实例。对确定水泵机组的瞬时值和切削结果进行了分析。  相似文献   

16.
根据轴流泵的特点,参考离心泵诱导轮的设计方法,对轴流泵前置导轮的设计与配套作了初步研究,主要内容包括:导轮的布置和轴面尺寸的拟定;导轮的计算截面的划分和叶片进出口安放角计算;利用螺旋线对导轮的叶片绘形等等.经过如此设计的前置导轮装于轴流泵进口,能够减轻轴流泵的汽蚀和改善主叶轮的进口流态,这在试验中已经得到了初步验证.由此证明如此设计是合理可行的.  相似文献   

17.
加捻工艺对高模低缩(HMLS)涤纶帘线性能的影响   总被引:1,自引:0,他引:1  
针对高模低缩(HMLS)涤纶工业丝模量高、伸长小,捻线时强力损失大的特点,通过分析加捻工艺对帘子线性能的影响,提出了合理设置捻线速度并采用多股式气圈环工艺,是减少高模低缩涤纶帘线强力损失的有效途径.  相似文献   

18.
叶轮与蜗壳是离心泵重要的组成部分,它们的制作精确程度和耦合性直接影响离心泵水利性能。为 能更好地改善叶轮与蜗壳耦合处产生的流动损失,以Pro/E为设计平台,提出叶轮木模图及蜗壳二维投影图的分析 及测绘方法,结合Pro/E中“偏移坐标系基准点”等命令,实现叶轮扭曲叶片及蜗壳的实体精准造型,并通过Fluent 进行数值模拟。压力和速度分布图显示叶轮与蜗壳耦合处压力和速度呈均匀规律性变化,扬程计算显示符合设计 要求。分析结果证明,此种绘图方式不仅精确、快速、灵活,还能够改善叶轮与蜗壳耦合处的流动损失,为后续流场 数值分析奠定基础。  相似文献   

19.
为了揭示多相混输泵动叶轮流道内含气率的分布规律,基于标准k-ε湍流模型,以空气和纯水作为两相介质,采用Fluent软件在进口含气率为30%的工况下对泵内两相流态进行模拟,分析不同叶高下的气相分布特性。研究表明:在首级动叶轮叶片压力面轮毂附近的气相体积分数最大,而在次级和末级动叶轮叶片压力面上的气相体积分数基本相同;在不同压缩级动叶轮0.5倍叶高处,从动叶轮进口到出口,首级动叶轮叶片吸力面上的气相体积分数比次级和末级大;从轮毂到轮缘首级动叶轮叶片压力面上的气相体积分数与次级和末级动叶轮叶片压力面上的气相体积分数的差值逐渐减小,而在吸力面却逐渐增加。本文的研究结果为提高多相混输泵输送效率及运行稳定性提供了参考。  相似文献   

20.
离心泵叶轮的优化设计模型   总被引:7,自引:0,他引:7  
论述了以泵的能量损失最小为目标函数,以叶轮叶片出口宽度、出口角、直径、叶片数、进口直径、进口角、进口宽度为设计变量的泵叶轮的优化设计模型及优化计算方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号