首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
为了解硝酸介质中H_(2)C_(2)O_(4)在铂、玻碳和金刚石掺硼(BDD)电极上的电解氧化机理,使用循环伏安、线性扫描伏安等方法开展了电化学测试,研究了电极电位、电流密度以及硝酸浓度对H_(2)C_(2)O_(4)氧化的影响,并分析了硝酸的影响主要来自于H+。在铂电极上,推测H_(2)C_(2)O_(4)不仅发生电氧化,而且吸附态的·OH与吸附态H_(2)C_(2)O_(4)反应生成CO_(2)和H_(2)O。在金刚石掺硼电极上,·OH的间接氧化是H_(2)C_(2)O_(4)氧化的主要作用,硝酸浓度增加使·OH产生量变少,进而导致H_(2)C_(2)O_(4)氧化速率降低。使用旋转圆盘玻碳电极测定了H_(2)C_(2)O_(4)的扩散系数为1.4×10^(-5)cm^(2)/s,在1.34~1.42 V下通过Tafel外推法得到H_(2)C_(2)O_(4)电化学氧化的交换电流密度为5.8×10^(-6)A/cm^(2)。  相似文献   

3.
^(99)Tc和^(90)Sr是环境放射化学重点关注的两种β放射性核素,放化传感器可以实现水溶液中这两种核素的现场直接测量,有望用于核电站、后处理厂、放射性废物处理处置设施、医用同位素生产设施等核设施周边环境水和液态流出物中^(99)Tc和^(90)Sr的实时监测。本文系统介绍了^(99)Tc和^(90)Sr放化传感器的基本原理、双功能树脂类型、微型柱结构、研究及应用现状等,指出了制约放化传感器发展技术方面的主要因素,并对我国发展β核素放化传感器技术提出了建议。  相似文献   

4.
为设计一种对U(Ⅵ)具有较高吸附容量和较高选择性的吸附材料,采用石墨相氮化碳(g-C_(3)N_(4))与磷酸二氢铵作为原料,通过热共聚法制备P-C_(3)N_(4),再利用磷酸氢二钠与硝酸银通过原位共沉淀法制备Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料。吸附实验结果表明,Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料在室温下对U(Ⅵ)的吸附容量达到524.6 mg/g;在溶液中同时存在Na^(+)、K^(+)、Mg^(2+)、Ca^(2+)、Sr^(2+)、Zn^(2+)、Ni^(2+)和Co^(2+)等竞争离子时,对U(Ⅵ)的吸附分配系数达到6.13×10^(3)mL/g。XPS分析结果表明,Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料中的含N和含P官能团可能参与U(Ⅵ)吸附过程。因此,Ag_(3)PO_(4)/P-C_(3)N_(4)复合吸附材料是一种对U(Ⅵ)具有较高吸附容量和较高选择性的吸附材料。  相似文献   

5.
主要研究了723~813 K下LiCl-KCl-LaCl_(3)熔盐体系中La^(3+)在惰性W电极上的电化学行为。在惰性W电极上La^(3+)约在-2.04 V(vs.Ag/AgCl)被还原,该反应是一步三电子转移的过程。在LiCl-KCl-LaCl_(3)熔盐体系中利用开路计时电位计算La^(3+)/La在W电极上的氧化还原电位、形成LaCl_(3)吉布斯自由能以及La^(3+)活度系数。采用电位滴定法研究LaCl_(3)与氧化物离子的反应,滴定曲线表明氧化物的沉淀为LaOCl。根据实验得到的表观电极电位、活度系数和相关的热力学数据,绘制了La-O稳定性相图。E-pO^(2-)稳定相图显示La^(3+)在723 K和较高O^(2-)的浓度范围内稳定存在的化合物为LaOCl。  相似文献   

6.
^(55)Fe和^(63)Ni的测量对核电厂液态流出物的排放监测具有十分重要的意义。本工作建立了一种核电厂液态流出物样品中^(55)Fe和^(63)Ni的联合分析方法,通过氢氧化铁和氢氧化镍沉淀富集^(55)Fe和^(63)Ni,再以TRU树脂和镍树脂分离^(55)Fe和^(63)Ni,用低本底液体闪烁谱仪进行测量,并对相关测量条件进行分析研究。当样品用量为1.0 L、测量时间为60 min时,该方法对^(55)Fe的探测下限为0.06 Bq/L,对^(63)Ni的探测下限为0.02 Bq/L,满足核电厂液态流出物中^(55)Fe和^(63)Ni的分析要求。  相似文献   

7.
建立了一种核电厂放射性废离子交换树脂中^(55)Fe和^(63)Ni的联合分析方法。将废树脂样品经芬顿氧化消解后,先用氢氧化钠沉淀法沉淀^(55)Fe和^(63)Ni,再用阴离子交换树脂联合丁二酮肟沉淀对杂质离子进行分离纯化,纯化后用液体闪烁计器测量。本方法对废树脂中^(60)Co、^(65)Zn、^(54)Mn等干扰核素的去污因子均大于10^(3)。本方法对^(55)Fe和^(63)Ni的平均化学回收率分别为86%和90%,对废树脂中^(55)Fe和^(63)Ni的检测限分别为5.7 Bq/g、6.8 Bq/g。用加标样品对分析方法进行验证,预期值和测量值的偏差小于±10%。实验测得某核电厂一组一回路实际废树脂样品中^(55)Fe和^(63)Ni的平均活度浓度分别为(76.2±1.4)kBq/g和(120.0±5.1)kBq/g。  相似文献   

8.
为了解温度、Ce(NO_(3))_(3)料液浓度、晶种加入比例和晶种加料区域等工艺条件对Ce_(2)(C_(2)O_(4))_(3)产品颗粒粒径分布和形貌的影响规律,在杯式沉淀器中采用Ce_(2)(C_(2)O_(4))_(3)模拟Pu(C 2O 4)2进行连续沉淀实验研究。保持Ce(NO_(3))_(3)和草酸的加料区域、沉淀后母液中硝酸和草酸浓度不变,分别考察了30.0~50.0℃、Ce(NO_(3))_(3)浓度为0.084 mol/L和0.167 mol/L、晶种加入比例为0~2.0×10^(-1)和晶种加料区域等工艺条件对Ce_(2)(C_(2)O_(4))_(3)颗粒粒径分布和形貌的影响。50.0℃、Ce(NO_(3))_(3)浓度为0.167 mol/L,相比无晶种加入时,Ce_(2)(C_(2)O_(4))_(3)沉淀颗粒D 50值(一个样品的累计分布百分数达到50%时所对应的粒径)最大可增加62.2μm。50.0℃、Ce(NO_(3))_(3)浓度为0.167 mol/L、晶种分别从周边涡流区域和中心涡流区域加入时,对应的D 50最大值分别为154.1、120.7μm。相同工艺条件下,温度为30.0~50.0℃时,沉淀颗粒D 50最大值随温度的增加而增大。各工艺条件下,当D 50达最大值时,Ce_(2)(C_(2)O_(4))_(3)颗粒以较为规则的片状长条形为主,碎片形和不规则的片状聚集形颗粒所占比例较小。Ce_(2)(C_(2)O_(4))_(3)晶粒生长方式属于螺旋增长机制,晶粒单层薄片厚度约为16 nm。  相似文献   

9.
~(99)MoO_4~(-2_99m)TcO_4~(-1)发生器在使用中有时会出现衰老现象,即高比度的~(99)MoO_4~(-2)只能得到洗脱效率极低的子体~(99m)TcO_4~(-1),使放射性药物工作者和临床医师遇到了困难。我们使用酸性氧化剂,使已出现衰老现象的~(99)MoO_4~(-2_99m)TcO_4~(-1)发生器得到再生,洗脱的子体~(99m)TcO_4~(-1)的产率可以提高50~100倍。  相似文献   

10.
分别以CCl_(4)和HCl气体作为氯化试剂,进行了铀氧化物(主要为U_(3)O_(8))的氯化机理和各影响因素研究。以CCl_(4)为氯化试剂对U_(3)O_(8)粉末进行氯化,通过热重分析研究了氯化反应过程的机理及动力学行为,氯化产物主要为UCl_(4)。同时研究了CCl_(4)对不同种类和形态铀氧化物的氯化,UO_(2)芯块由于结构致密很难进行氯化,UO_(2)粉末和UO_(3)粉末很容易被CCl_(4)氯化,产物分别为UCl_(4)和UCl_(6)。以HCl气体为氯化试剂对LiCl-KCl熔盐中的U_(3)O_(8)粉末进行氯化,研究了反应温度、氯化时间、HCl气体流速、U_(3)O_(8)粉末投料量以及铀氧化物种类和形态的影响。结果表明,提高反应温度、延长反应时间、提高HCl气体流速,有利于氯化率的提高。推荐HCl气体氯化U_(3)O_(8)粉末的工艺参数为:氯化反应温度为500℃、HCl气体流速为0.6 L/min。  相似文献   

11.
在动力堆乏燃料中,99Tc是主要的裂变产物之一,它的半衰期长达213×105 a,对生态环境有长期危害,是PUREX流程非常关注的核素。Re的化学性质与Tc相似,研究Re的电化学行为,对了解Tc的化学性质具有很好的参考价值。本工作研究了H2SO4、HNO3介质中ReO-4在铂电极上的电化学行为。在H2SO4和HNO3体系中,循环伏安和控制电位电解库仑的测试结果表明,ReO-4在铂电极上的还原是一个多步的电子转移过程,会在铂电极上生成沉积层ReO2,此时会建立起电对ReO-4/ReO2。在HNO3体系中,当HNO3浓度为100 mol/L时,ReO-4的还原过程与H2SO4体系中相似,当HNO3浓度为200、400 mol/L时,HNO3通过电化学还原产生HNO2,HNO2氧化溶液中的低价Re。  相似文献   

12.
We examined electrochemical redox reactions of UO2 2+ in perchlorate and organic acid (oxalic, malonic, succinic, adipic, L-malic, and L-tartaric acids) solutions using cyclic voltammetry to reveal the effects of complex formation with organic acids on the redox behavior. In the perchlorate and organic acid solutions, a redox reaction of UO2 2+/UO2 + and an oxidation reaction of U(IV) produced by a disproportionation of UO2 + were observed. The peak potentials of the UO2 2+ reduction showed a good linear relationship with the stability constants of 1:1 UO2 2+-organic complexes. In the presence of malonic acid, the redox potential for UO2 2+/UO2 + was constant at pH 1-2 and 5-6 while it decreased with an increase in pH from 2 to 5. Additionally, it was independent of malonate concentration at 0.1–0.5 M while it decreased with an increase in the concentration from 0.005 to 0.1 M. Based on the experimental and the speciation calculation results, we determined the redox reactions of UO2 2+-malonate complexes as a function of pH and malonate concentration. We also determined the redox reactions of UO2 2+-oxalate complexes in the same way.  相似文献   

13.
14.
镧系及锕系元素在离子液体中的电化学行为   总被引:1,自引:0,他引:1  
乏燃料回收是核燃料循环的核心,对核安全和核能可持续发展具有重要的意义,其分为使用水溶液的湿法和不使用水溶液的干法处理。熔盐电解技术是乏燃料干法回收的重要方法之一,但其工艺温度往往在数百摄氏度,对设备和能耗要求都很高。离子液体具有电化学窗口宽、低熔点、低蒸汽压、热稳定性好等优点,有望替代高温熔盐用于乏燃料干法回收。本文概述了镧系元素和锕系元素在离子液体中电化学方面的研究状况,表明离子液体用于乏燃料干法回收是可行的,但需要更多的基础性研究。  相似文献   

15.
Abstract

The electrochemical reduction of uranyl ion has been studied by the cyclic voltammetry (CV) and the spectroelectrochemical method using optically transparent thin-layer electrode (OTTE) in basic carbonate and acidic aqueous solutions. The CV measurements showed that U(V) was formed quasireversibly by the reduction of uranyl ion in both basic carbonate and acidic Perchlorate solutions. Uranium(V) was found to be much more stable in the carbonate media and its absorption spectrum was measured by the OTTE cell under the applied potentials varying stepwise from ?0.7 to ?0.9V vs. Ag/AgCl (3 M NaCl). On the other hand, in the acidic solution the absorption spectra recorded at 20s interval by the OTTE cell under the fixed applied potential at -0.4 V vs. Ag/AgCl (3 M NaCl) exhibited only the spectral change from uranyl ion to the final reduction product U(IV). It has been suggested based on the present electrochemical study that uranyl is stable for the redox reaction in the deep groundwater, which is in reductive environment of —0.3 V (vs. NHE) and contains carbonate ion, but is reduced to U(IV) in the acidic groundwater in the same reductive environment.  相似文献   

16.
The structure of uranyl nitrato complex with CMPO [n-Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide] in solid state and in non-aqueous solvents without containing free CR/IPO has been studied by using IR spectrophotometer, 13C- and 31P-NMR. The carbonyl(vcO) and phosphoryl(vpO) stretching bands of coordinated CMPO were observed at lower wavenumber than the corresponding bands of free CMPO in both the states. The 13C and 31P peaks assigned to the carbonyl carbon and phosphoryl phosphine of coordinated CMPO was detected in the lower field than that of free CMPO. From these results, it was concluded that the uranyl nitrato complex with CMPO in both the states has the structure with two nitrate and one CMPO coordinated as bidentate in the equatorial plane of uranyl ion, i.e., UO2(NO3)2·CMPO. Furthermore, the electrochemical studies of UO2(NO3)2·CMPO complex in CH3CN have been carried out using cyclic and normal pulse voltammetric methods. It was found that the UO2(NO3)2·CMPO complex is reduced to U(V) complex at around ?1.22V vs. Fc/Fc+ (ferrocene/ferrocenium) and that the resulting reductant is oxidized to U(VI) at around +0.04V vs. Fc/Fc+.  相似文献   

17.
用分光光度法研究了高氯酸介质中单甲基肼(MMH)与亚硝酸(HNO_2)的反应,建立了单甲基肼与亚硝酸的反应速率方程式.高氯酸介质中HNO_2和MMH反应的速率方程如下:-dc(HNO_2)/dt=kc(H~+)~(0.9)c(MMH)~(1.1)c(HNO_2).温度4.5 ℃, c_0(ClO_4~-)=0.50 mol/L时,反应速率常数k=(46.0±2.7) L~2/(mol~2·s),该反应的活化能E_a=(42.4±0.1) kJ/mol.以上研究结果表明,在高氯酸介质中,单甲基肼与亚硝酸能很快反应,提高酸度、增大单甲基肼浓度均有利于亚硝酸的还原.  相似文献   

18.
We have proposed a new reprocessing process by using ionic liquids (ILs) instead of molten salts of alkali chlorides in pyrochemical process. In the proposed process, spent nuclear fuels are dissolved in ILs by using Cl2 as an oxidant, and UO2 2+ and PuO2 2+ ions in ILs are recovered as UO2 and PuO2 by electrochemical reduction. In order to examine applicability of ILs as media for reprocessing, we have studied electrochemical behavior of UO2 2+ in 1-butyl-3-methylimidazolium chloride (BMICl), 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4), and 1-butyl-3-methylimidazolium nonafluorobutanesulfonate (BMINfO). Electrochemical properties of uranyl chloride dissolved into ILs were examined by cyclic voltammetry. In BMICl, an almost reversible redox couple was observed, and the formal potential and the diffusion coefficient were evaluated as _0:758V vs. Ag/AgCl and 4:8 × 10?8 cm2s?1, respectively. On the other hand, the electrochemical reactions of UO2 2+ in BMIBF4 and BMINfO were irreversible. In BMINfO, some reduction peaks and one sharp oxidation peak were observed in the range of ?0:6~–0:2V and around 0.85V vs. Ag/AgCl, respectively. The reduction and oxidation peaks were assigned to multi step reduction of UO2 2+ to U(IV) via U(V) and/or direct reduction of UO2 2+ to U(IV), and the oxidative dissolution of the resulting U(IV) compounds, respectively. The electrochemical reduction of UO2 2+ in BMINfO at ?1:0V vs. Ag/AgCl produced the deposits on a carbon electrode as a cathode. Analyses of the deposits with the scanning electron microscope and the energy dispersive X-ray spectrometer indicated that the deposits are compounds containing uranium, oxygen, and chlorine. As a result, it is expected that the UO2 2+ in IL can be recovered electrolytically as uranium compounds such as UO2 and uranium oxychlorides.  相似文献   

19.
研究了高氯酸介质中氨基羟基脲与HNO2的还原反应动力学,其动力学方程式为-dc(HNO2)/dt=kc(HNO2)c0.25(HSC)c0.42(H+),在1.0℃时反应速率常数k=(1.05±0.05)(mol/L)-0.67•s-1,活化能为(73.1±3.0)kJ/mol。研究了氨基羟基脲浓度、H+浓度、硝酸根浓度对氨基羟基脲与HNO2还原反应速率的影响。结果表明:增加氨基羟基脲浓度和H+浓度,HNO2还原速度增加;高氯酸根浓度对氨基羟基脲还原HNO2速率基本无影响。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号