首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 6 毫秒
1.
37Mn5钢精炼过程夹杂物转变机理   总被引:1,自引:0,他引:1  
王祎  张立峰  任英  任强 《钢铁》2020,55(5):39-44
 钢中非金属夹杂物在精炼过程中发生成分转变,影响最终产品性能。37Mn5石油套管钢生产精炼过程中,在不进行钙处理的条件下,夹杂物成分从LF炉进站时的Al2O3转变为软吹结束时的Al2O3-CaO-SiO2-MgO-CaS复合夹杂物。为研究夹杂物改性原因,揭示夹杂物转变机理,从生产现场取钢样进行夹杂物分析。结果表明,大尺寸夹杂物与一般尺寸夹杂物的成分存在显著差异,随着精炼过程的进行,不同尺寸夹杂物成分和数密度变化趋势也有所不同。大于10 μm的夹杂物成分接近精炼渣,可能是由渣进入钢液引起的。在硅铁合金中钙的质量分数为1.17%,会起到类似钙处理的效果,快速生成大量小尺寸CaS夹杂物。通过对夹杂物成分、数量、形貌进行分析,结合渣成分和热力学计算结果,得到了37Mn5钢精炼过程夹杂物经历脱氧、耐材侵蚀、渣进入钢液、合金带入钙与钢液反应、夹杂物与钢液反应等过程,以及成分发生转变的机理。  相似文献   

2.
罗艳  杨文  刘占礼  姜静宇 《炼钢》2023,(2):28-35
为提高Q345D风电钢VD精炼过程大尺寸夹杂物的去除效率,展开了VD底吹工艺优化试验研究。在VD真空处理前,方案1即VD精炼高真空的前10 min底吹单孔流量400 L/min、后5 min单孔流量250 L/min条件下,钢中夹杂物主要为高Al2O3含量的钙铝酸盐,而优化方案2~3即VD精炼高真空的前10 min底吹单孔流量500 L/min、后5 min单孔流量150~100 L/min条件下钢中夹杂物平均成分为更低熔点钙铝酸盐;VD处理后钢中夹杂物均为低熔点夹杂物。方案1中VD精炼过程大于10μm和大于15μm的夹杂物平均尺寸分别增加66.24%和62.32%;方案2中大于10μm和大于15μm的夹杂物的平均尺寸分别增加23.40%和33.39%,尤其夹杂物数密度仅分别增加16.33%和28.57%。这充分说明了VD精炼过程高真空的前10 min强搅拌、后5 min中强搅拌的工艺有利于对大颗粒夹杂物的去除,同时减小卷渣概率。  相似文献   

3.
为探究37Mn5钢精炼过程尺寸在10μm以上的大尺寸Al2O3-SiO2-MnO类夹杂物的形成与演变机理,在实际“EAF→LF→VD→钙处理→CC”工艺生产37Mn5钢的精炼全流程进行系统取样,检测了钢液成分并重点分析了不同冶炼阶段大尺寸Al2O3-SiO2-MnO类夹杂物的形貌和成分特征,结合实际生产工艺与热力学计算,揭示了这类夹杂物的演变规律。研究结果表明:由于出钢过程局部钢液Al含量低而O含量高,大尺寸Al2O3-SiO2-MnO夹杂物形成;LF精炼初期,局部Ca含量增加形成Al2O3-SiO2-MnO-CaO夹杂物;LF精炼中期以后Ti含量增加会变性前期形成的这两类夹杂物,形成含TiOx的夹杂物,随着冶炼的进行,Ti元素在夹杂物中分布逐渐均匀;VD后钙处理量不足导致夹杂物变性效果不理想,对大尺寸夹...  相似文献   

4.
范新智 《特殊钢》2010,31(3):33-34
叙述太钢二炼钢厂90 t LF精炼0Cr18Ni9奥氏体不锈钢时对钢中夹杂物的控制效果。工艺实践表明,钢水经VOD后,钢中氧含量为(40~55)×10-6,再经LF喂铝线0.3~1.0 kg/t时,可使钢中氧含量进一步降至(24~35)×10-6,同时钢中夹杂物数量减少40%以上;接着喂0.9~1.5 kg/t硅钙线使钢中夹杂物变性成球状,同时通过200~600 L/min氩气搅拌10~20 min和50~150 L/min氩气搅拌15~20 min,使钢中夹杂物数量进一步减少50%以上,并去除了钢中尺寸为30μm以上的夹杂物。  相似文献   

5.
利用渣钢平衡实验研究了精炼渣钙铝比(w(CaO)/w(Al2O3))对铈处理低合金高强钢中夹杂物的影响。通过扫描电子显微镜(SEM)、能谱分析仪(EDS)等检测手段,利用AZtecSteel夹杂物自动分析系统,探讨了钢中夹杂物类型、数量和尺寸的变化规律,利用FactSage 8.0计算并分析了稀土夹杂物的演变规律。结果表明,稀土元素加入初期,夹杂物平均尺寸大幅度减小而数密度增加,然而随着实验的进行,夹杂物平均尺寸增大而数密度减小。精炼渣钙铝比为2.0时,钢中O含量可降低至7.8×10-6,并在反应初期获得平均尺寸最小(1.21μm)的稀土夹杂物。钢中加入铈后,夹杂物的转变路径为Al2O3→CeAlO3→Ce2O3或Ce2O2S。不同精炼渣处理钢中氧化物夹杂转变过程相同,但随着精炼时间延长,生成了部分CeAlO3夹杂物,使钢中Ce含量降低。  相似文献   

6.
通过工业试验取样研究了X80管线钢精炼过程夹杂物的类型、尺寸、成分等变化规律,并结合FactSage8.1软件对钙处理和钢液冷却凝固过程夹杂物的演变机理进行了热力学计算分析。试验结果表明,LF精炼结束时夹杂物主要为MgO–Al2O3和MgO–Al2O3–CaO,数量占比分别为25%、75%,其尺寸主要分布在1~5 μm之间,且1~2 μm和2~5 μm的夹杂物比例分别为56.0%、37.3%;RH精炼中T[O]、[N]质量分数分别由LF精炼结束时的0.0022%、0.0059%降低至0.0010%、0.0035%,夹杂物数量密度由LF结束约23.07 mm–2降低至7.44 mm–2,夹杂物去除率约67.8%;钙处理时,夹杂物主要为MgO–Al2O3–CaO和CaS–Al2O3–CaO系,夹杂物中CaS平均质量分数由RH精炼结束时的8%增加至36%,CaO平均质量分数由24%减少至12%;软吹结束时,尺寸<40 μm的夹杂物中SiO2占比在0~2.5%之间;尺寸>40 μm的夹杂物中SiO2占比在6.0%~8.0%之间,尺寸>40 μm的夹杂物主要为CaO–Al2O3–MgO–SiO2,其化学成分与精炼渣化学成分基本一致,其来源为精炼渣卷入。热力学计算结果表明,当[Ca]质量分数在10.5×10–6~15.8×10–6时,尖晶石夹杂全部完成改性,夹杂物全部为液态钙铝酸盐;当钢液在浇铸温度下,夹杂物主要为液态的钙铝酸盐,当温度降低至1428 ℃时,液态夹杂物完全转化为固态,随着温度继续下降1309 ℃以下,夹杂物的类型基本不发生改变,整个温降过程夹杂物中CaO含量减少,CaS含量增加。   相似文献   

7.
钢中常见的非金属夹杂物以硫化物、氧化物等为主,主要在LF精炼工序处理去除。为了达到生产洁净钢的目的,针对硫化物、氧化物产生的原因和控制方法进行分析研究,并采取相应措施。转炉吹炼终点温度控制在1 620~1 635℃、终点C质量分数控制在0.08%~0.12%范围内。优化LF精炼各阶段的氩气流量,大大降低了精炼过程吸气程度,保证了夹杂物的去除;将LF炉静吹时间控制在10 min即可满足净化钢液的目的;利用钙处理对夹杂物进行球化改性处理,通过保证软吹时间和氩气气量促进了夹杂物的上浮。  相似文献   

8.
屠兴圹  苏振伟  周淼  赵赟 《炼钢》2024,(1):52-58+80
在精炼进站时采用BaCO3作为示踪剂,对比钢包底吹氩气流量对“120 t BOF→LF→CCM”流程生产的冷镦钢SWRCH35K中DS类夹杂物的影响。结果表明,氩气流量对精炼结束炉渣成分及夹杂物的类型无明显影响;精炼进站到精炼结束采用小氩气和正常氩气搅拌夹杂物密度分别降低4.5个/mm2和7.1个/mm2,精炼结束到中包两种工艺夹杂物变化相差不大,精炼正常氩气搅拌精炼结束、软吹后、中包含Ba的夹杂物比例比小氩气搅拌分别高51.5%、26.1%、39.3%。铸坯中DS夹杂物组成有单相、两相和三相。精炼采用小氩气搅拌和正常氩气搅拌铸坯中检测到含Ba的DS夹杂物占所有DS夹杂物的比例分别为28.6%和39%。所以,控制精炼过程中冶炼的氩气搅拌强度也是控制钢中DS夹杂物的关键。  相似文献   

9.
系统分析和研究了采用“EAF→ LF→VD→CC”工艺流程生产试验钢时,各工序的全氧与氮含量的变化情况、钢液中非金属夹杂物的生成与变化以及精炼初渣对夹杂物去除的影响.结果表明:试验钢在LF精炼过程中w(T.O)平均下降42.83%,经VD真空处理后w(T.O)和w(N)平均下降48.77%和10.72%.在LF精炼过程中,钢液中非金属夹杂物按“Al2O3系夹杂物→MgO-Al2O3系夹杂物→CaO-MgO-Al2O3系夹杂物”顺序转变,其中MgO-Al2O3系夹杂物向CaO-MgO-Al2O3系夹杂物转变是由外向内逐步进行,并且夹杂物中CaO与MgO互不相溶.精炼初渣碱度控制在2.5左右对于炉渣吸收夹杂较为有利.  相似文献   

10.
采用夹杂物自动扫描分析仪Aspex对轴承钢炉外精炼过程中的非金属夹杂物进行大面积扫描,系统研究了炉外精炼过程钢液纯净度变化,对关键工序进行氧、氮含量分析,同时利用"无水电解"提取各个工序夹杂物,以便观察夹杂物三维形貌,以指导生产实践。研究表明,LF-VD过程,夹杂物经历了Al_2O_3→MgO·Al_2O_3→CaO-MgO-Al_2O_3演变。LF精炼初期,钢液中形成大量Al_2O_3夹杂物,随着LF精炼地进行,钢液中逐渐形成MgO·Al_2O_3、钙铝酸盐、CaO-MgO-Al_2O_3等复合夹杂物,VD真空后,钢液中形成大量CaO-MgO-Al_2O_3夹杂物。LF精炼初期,钢液中夹杂物数量密度达到16.25个/mm~2,随着LF精炼的进行,夹杂物数量逐渐减少,VD破空后钢液中夹杂物数量密度降低为6.87个/mm~2,随着静搅地进行,钢液中夹杂物数量密度逐渐降低,VD吊包夹杂物数量密度增加,可能是卷渣造成。  相似文献   

11.
刘绍康  黄煌 《特殊钢》2008,29(5):41-42
研究了100 t EBT DC电弧炉-100 t LF/VD-300 mm×340 mm连铸坯生产GCr15轴承钢、齿轮钢时,电弧炉终点[C]、精炼渣、吹氩工艺、Als、保护浇铸、钢水温度及耐火材料等工艺参数对钢中Ds出现几率的影响。实践表明,采用较高的终点[C](≥0.10%)、精炼渣碱度2.5~3.5、真空后弱搅拌时间≥15 min、Als控制在0.011%~0.020%、良好的保护浇铸以及选用优质耐火材料等措施,可降低钢中大颗粒点状夹杂的出现几率。  相似文献   

12.
采用"铁水→提钒转炉→预处理脱硫→70 t转炉→LF→VD→圆坯连铸→缓冷"的工艺流程生产4130X钢(/%:0.31C,0.26Si,0.80Mn,0.008P,0.003S,0.99Cr,0.21Mo,0.005Ti,0.023Al)Φ600 mm铸坯.通过控制铁水中P≤0.140%,S≤0.070%;转炉提钒后采...  相似文献   

13.
蒋育翔  焦兴利 《特殊钢》2011,32(1):36-39
X80微合金化管线钢冶炼的工艺流程为300 t顶底复吹转炉-钢包吹氩微合金化-LF-RH。通过转炉气动挡渣法控制出钢下渣量≤4 kg/t;钢包顶底吹氩搅拌6 min铝粒脱氧;控制LF顶渣CaO/Al2O3=1.7~1.9,碱度(CaO/SiO2) =4.5~6, (FeO+MnO)≤1.0%; RH喂FeCa线0.8 kg/t,使T[O]达到13×10-6,夹杂物尺寸≤10μm, ≤5μm夹杂物占98.93%,钢中Al2O3尖晶石夹杂物转变为CaO-MgO-Al2O3系三元夹杂。分析了冶炼过程夹杂物数量、尺寸形态和组成,得出管线钢夹杂物变性的规律。  相似文献   

14.
因210tBOF冶炼终点NVA32(%:0.12~0.18C、1.30~1.60Mn)钢中硫含量由0.005%升高至0.020%,通过BOF出钢过程加入1000kg二元合成渣CaO-CaF2、200kg铝粒,并加入硅锰和硅铝钡合金,可使钢中硫含量降低0.007%~0.008%,脱硫率达30%。在LF精炼时,通过进一步加入合成渣800kg,600~900L/min吹氩,加热后喂600m硅钙线,30~45L/min吹氩10min,终渣碱度R=4.5~5.5,钢中硫含量进一步降低至0.001%~0.002%。  相似文献   

15.
杜广巍  郭汉杰 《特殊钢》2016,37(4):18-22
55SiCr钢280 mm×325 mm铸坯(/%:0.55C,1.42Si,0.67Mn,0.008S,0.67Cr)的冶炼流程为80 t BOF-LF-RH-CC工艺。通过BOF出钢加Al和硅铁合金,同时加入精炼渣,控制精炼过程渣碱度R(CaO/SiO2)为2.0左右,RH≥20 min,软吹搅拌≥15 min,控制钢中夹杂物转变,得到洁净弹簧钢55SiCr。分析结果表明,LF精炼过程中夹杂物由早期的Al2O3-SiO2-MnO和Al2O3夹杂将逐渐转变为Al2O3-CaO-SiO2夹杂,RH真空处理后夹杂物全部转变为Al2O3-CaO-SiO2夹杂,LF开始精炼T[O]和[N]分别为36×10-6和26×10-6,铸坯T[O]、[N]分别为7×10-6和43×10-6,铸坯中夹杂物主要为Al2O3-CaO-SiO2和Al2O3,尺寸≤10μm。   相似文献   

16.
吴胜军 《特殊钢》2011,32(3):51-53
通过转炉终点控制-%:≥0.12C、≤0.008P、≤0.010S-1~#LF碱性渣精炼≥40 min,2~#LF酸性渣(R=0.8~0.9)精炼30 min-VD 67 Pa≥10 min,软吹氩≥15 min-保护浇铸(钢水过热度≤30℃),结晶器和末端电磁搅拌等工艺措施,开发了帘线钢XLX72A(%:0.69~0.73C、0.20~0.28Si、0.47~0.55Mn、≤0.015P、≤0.015S、≤0.05Ni、≤0.08Cr、≤0.05Cu、≤0.005A1)。结果表明,钢中Cu、Al含量分别为0.02%~0.03%和0.002%~0.003%,Φ5.5 mm材的抗拉强度R_m为1 050~1 090 MPa,断面收缩率Z为43.5%~48.0%,钢中低倍组织和显微夹杂物级别均符合标准要求,使用性能良好。  相似文献   

17.
李泰 《特殊钢》2015,36(5):24-26
非调质钢F45MnVS的生产流程为50 t UHP EAF-LF-VD-260 mm×300 mm,180 mm×220 mm坯连铸-Φ20~Φ160 mm材轧制。根据显微组织分析,热顶锻裂纹由块状和片状MnS和附着的Al2O3-MnO-FeO复合氧化物引起,通过控制钢中Al 0.010%~0.030%,电弧炉终点[C]≥0.20%,终点[P]≤0.025%,[Mn]/[S]>20,LF精炼渣碱度≥3.0,VD后软吹氩时间≥12 min,保证钢中硫分布均匀;中间包钢水过热度20~30℃,控制连铸拉速防止MnS偏析;控制终轧温度850~1000℃,轧后冷速2~4℃/s等工艺措施,使钢中夹杂物主要为长条状MnS,热顶锻试验无裂纹和其他缺陷,全部合格。  相似文献   

18.
通过对37Mn5钢(%:0.39C、1.30Mn)Φ85 mm×8 mm管外折叠缺陷的分析,得出钢晶界处存在尺寸~20μm的硅酸盐和SiO2等脆性夹杂物是钢管外折叠形成的主要原因。通过控制转炉出钢后钢包顶渣厚度≤50mm,LF精炼(FeO)≤1%,白渣时间≥15 min,软吹氩≥10 min,全程保护连铸,使[O]为(11.6~17.1)×10-6,钢中夹杂级别A类为0~2.0,B、C类为0,D类为0.5~1.0,有效地控制钢管外折叠的发生。  相似文献   

19.
杨利彬  焦兴利  贺庆  刘浏 《特殊钢》2011,32(6):40-42
X80管线钢(基本成分/%:0.09C、0.42Si、1.85Mn、0.022P、0.005S、0.06Als)的冶金流程为KR铁水脱硫预处理-300 t顶底复吹转炉-钢包吹氩-LF-RH-250 mm×2 150 mm板坯连铸。工艺炼钢和精炼主要优化工艺为:控制转炉出钢下渣量≤4 kg/t,采用(%):55~60CaO、7~12SiO2、25~30Al2O3精炼渣系,控制LF精炼渣CaO/Al2O3=1.7~1.9,CaO/SiO2=4.5~6.0,(FeO+MnO)≤1.0%,吹氩站顶底吹氩预成渣,RH真空度≤66.7 Pa,RH后喂钙线0.8 kg/t。结果表明,转炉终点碳氧积由0.002 84降为0.002 44;精炼后(FeO+MnO)为0.913%,全氧含量为0.0013%。成品材夹杂物级别≤1.0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号