首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
分别使用不同种类的表面活性剂对SnO_2在二维石墨烯片表面的生长和所得到的复合片层材料的三维自组装进行多级调控,制备了具有取向大孔结构的SnO_2和石墨烯复合气凝胶材料(SnO_2-CTAB/GM)。SEM和TEM等测试表明了SnO_2-CTAB/GM中取向大孔结构的存在,且SnO_2纳米颗粒以2~3nm的尺寸均匀分布在石墨烯片层表面。电化学测试表明了SnO_2-CTAB/GM复合材料具有高可逆容量和循环稳定性:当电流密度为100mA/g时,首次可逆容量高达1125mAh/g,循环60次后,可逆容量稳定在945.6 mAh/g;当电流密度为100、500、2000 mA/g时,SnO_2-CTAB/GM复合负极材料的放电容量分别为1 180、786.5、566mAh/g,具有优异的的倍率性能。  相似文献   

2.
以六水合硝酸钴、苯甲酰丙酮为原料,利用微波法合成了Co_3O_4花球前驱体,并在500℃空气条件下锻烧得到不规则Co_3O_4花球。通过XRD、SEM、TEM对不规则Co_3O_4花球的微观结构和表面形貌进行了表征。电化学测试结果表明,不规则Co_3O_4花球负极材料在0.1 A/g的电流密度下,首次充电比容量达到816 m A·h/g,循环100圈后,比容量保持率为89.2%;倍率性能测试结果表明,电流密度从0.1 A/g增加到1 A/g时,比容量有一定的衰减,但电流密度恢复到0.1 A/g时,比容量几乎恢复到原来的水平;阻抗测试结果表明,不规则Co_3O_4花球负极材料循环前内阻为335Ω,50圈循环后内阻减小到240Ω。制备的不规则Co_3O_4花球具有较高的充电比容量、良好的循环性能和倍率性能。  相似文献   

3.
采用简便的溶胶凝胶法制备了V2O5/石墨烯复合电极材料。利用SEM、XRD、Raman和TGA表征了样品的微观结构,以V2O5/石墨烯复合材料和Li4Ti5O12分别作为正极和负极组装了V2O5/石墨烯 // Li4Ti5O12全电池。结果表明,该复合电极材料是含有0.55%(质量分数)石墨烯的片状正交相V2O5。电化学测试表明,与未复合石墨烯的纯V2O5样品相比,V2O5/石墨烯复合材料具有更高的储锂活性和优异的大电流放电性能。在200 mA/g的电流密度下,V2O5/石墨烯复合材料和纯V2O5样品的放电比容量分别为283 mAh/g和253 mAh/g;当电流密度增加到5 A/g时,V2O5/石墨烯复合材料依然保持有150 mAh/g的放电比容量,而纯V2O5样品的放电比容量仅为114 mAh/g;V2O5/石墨烯和纯V2O5电极的电荷传递电阻分别为142 Ω和293 Ω。V2O5/石墨烯 // Li4Ti5O12全电池测试结果表明,在1.0 ~2.5 V电压范围内,循环初期全电池正极材料的放电比容量从110 mAh/g衰减到96 mAh/g,随后又出现上升,循环100次后正极材料的放电比容量稳定在102 mAh/g,库伦效率接近100%,这表明该V2O5/石墨烯复合电极材料是一种非常有应用前景的锂离子电池电极活性材料。  相似文献   

4.
采用溶胶-凝胶法制备了V_2O_5/石墨烯复合电极材料。利用SEM、XRD、Raman和TGA表征了其微观结构。结果表明,该复合电极材料是含有质量分数0.55%石墨烯的片状正交相V_2O_5。电化学测试表明,与未复合石墨烯的纯V_2O_5样品相比,V_2O_5/石墨烯复合材料具有更高的储锂活性和优异的大电流放电性能。在200 m A/g的电流密度下,V_2O_5/石墨烯复合材料和纯V_2O_5样品的放电比容量分别为283和253 m A·h/g;当电流密度增加到5 A/g时,V_2O_5/石墨烯复合材料依然保持有150 m A·h/g的放电比容量,而纯V_2O_5样品的放电比容量仅为114 m A·h/g;V_2O_5/石墨烯和纯V_2O_5电极的电荷传递电阻分别为142和293Ω。V_2O_5/石墨烯//Li4Ti5O12全电池测试结果表明,在1.0~2.5 V电压内,循环初期全电池正极材料的放电比容量从110 m A·h/g衰减到96 m A·h/g,随后又出现上升,循环100次后,正极材料的放电比容量稳定在102 m A·h/g,库伦效率接近100%,表明V_2O_5/石墨烯复合电极材料是一种非常有应用前景的锂离子电池电极活性材料。  相似文献   

5.
通过一种简单的液相法以及随后的热处理合成了石墨烯/氧化亚铜复合材料(Cu_2O/GNSs)。通过扫描电子显微镜、透射电子显微镜、X射线衍射以及X射线光电子能谱对复合材料的形貌和结构进行了表征。当复合材料作为锂离子电池负极材料时,在50 mA/g电流密度下,首次可逆容量为448 mAh/g,经过90次循环以后,容量增加到613 mAh/g。在500、1 000 mA/g下,可逆容量依然可达444、346 mAh/g,分别为50 mA/g电流密度下容量的99%和77%。Cu_2O/GNSs较高的容量以及优异的倍率性能应当归结于石墨烯与氧化亚铜之间的协同作用。  相似文献   

6.
本文采用Fe3+对氧化石墨烯(GO)进行交联所获得的产物进行热还原生成的热还原石墨烯包裹Fe3O4结构(Fe3O4@TRGO)。采用透射电镜(TEM)、X射线衍射(XRD)等测试手段表征其的组成与形貌。并研究了Fe3O4@TRGO作为锂离子电池负极的储锂性能。热还原石墨烯在电池循环过程中抑制了Fe3O4的体积膨胀,其三维结构提高了电子传输速率。拥有良好的电化学性能(在0.1A/g电流密度下,循环120次后放电比容量为775.06mAh/g),且在大电流密度下也保持良好的性能(1A/g电流密度下循环110圈后容量为592.49mAh/g)。  相似文献   

7.
采用水热法成功制备了Fe3O4/石墨烯复合材料,用XRD和SEM等手段对复合材料的结构和形貌进行表征,结果表明Fe3O4颗粒细小且分布均匀,与石墨烯交叠复合在一起,此结构能有效地提高两种材料的协同效应;通过恒流充放电测试对复合材料的电化学性能进行分析,结果表明Fe3O4/石墨烯的储锂性能优于单一的四氧化三铁和石墨烯,30次循环后,可逆容量为1086mAh·g-1,且循环性能优异。  相似文献   

8.
采用碳辅助法和原位沉降法将Co_3O_4与石墨相氮化碳(g-C_3N_4)进行复合得到Co_3O_4/g-C3N4复合材料。利用XRD、SEM、TEM等多种表征手段对Co_3O_4和Co_3O_4/g-C_3N_4复合材料进行表征。结果表明,Co_3O_4均匀分布在g-C_3N_4片层中形成了(2D-3D)新型结构。电化学性能测试结果表明,Co_3O_4/g-C_3N_4复合材料电流密度为1 A/g时,比电容达到1 071 F/g,比纯Co_3O_4提升4.9倍;在电流密度为10 A/g时,经过1 000次循环,比电容仍能保持95.5%。  相似文献   

9.
采用水热法成功制备了Li_4Ti_5O_(12)/石墨烯纳米复合材料,用XRD,SEM等手段对复合材料的结构和形貌进行表征,分析结果表明纳米Li_4Ti_5O_(12)颗粒完整且分布均匀,与石墨烯交叠在一起,有效地阻止了双方的团聚;通过恒流充放电测试对其电化学性能进行分析研究,结果表明Li_4Ti_5O_(12)/石墨烯的储锂性能优于钛酸锂,30次循环后,可逆容量为260m Ah/g,循环性能优异;石墨烯量越大,Li_4Ti_5O_(12)/石墨烯纳米复合材料的可逆容量越高。  相似文献   

10.
以葡萄糖和石墨烯为碳源,通过简便的水热工艺成功制备了一系列具有多孔结构的C@CoSe/rGO复合材料。电化学测试结果表明,在200 mA/g电流密度下进行150圈循环测试后,C@CoSe/rGO-2复合材料的可逆比容量为751 mAh/g;在1 000 mA/g和2 000 mA/g大电流密度下进行150圈循环测试,其比容量仍可达525 mAh/g和285 mAh/g。该工作提供了一种简单的方法用于制备比容量高、倍率性能好且循环稳定的锂离子电池负极材料。  相似文献   

11.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

12.
采用溶剂热和后续高温热分解的方法制备单分散多孔ZnFeMnO_4和ZnCoMnO_4类椭圆形微米粒子。作为锂离子电池负极材料,表现出优异的储锂性能。ZnFeMnO_4和ZnCoMnO_4在1 A/g电流密度下,放电比容量分别达到575和646 mAh/g;在0.5 A/g电流密度下循环300次后的放电比容量分别保持968和1011 mAh/g,有望应用于高性能动力锂离子电池。  相似文献   

13.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

14.
采用简单高效的两步法制备交联结构的碳/氮双掺杂Fe_3O_4锂离子电池阳极复合材料(Fe_3O_4/C/N)。利用XRD、XPS、TG、SEM、TEM对其进行了表征与分析。当具有交联状纳米结构的复合材料Fe_3O_4/C/N用作锂离子电池的阳极材料时,展现出较高的可逆容量及优异的循环性能。在电流密度为0.2 A/g的条件下,交联状Fe_3O_4/C/N的首次库伦效率为73.9%,循环210圈后,容量仍达516 mA·h/g,容量保持率为64.6%,每个循环周期的容量衰减率为0.17%。  相似文献   

15.
采用溶胶凝胶法制备了棒状结构纳米五氧化二钒(NR-V_(2)O_(5)),并以此为原料进一步合成了三维分层多级结构的五氧化二钒(3D-V_(2)O_(5))。最终以沥青为碳源通过静电吸附法在其表面均匀地进行炭包覆,制备了3D-V_(2)O_(5)/C复合材料,并将其作为锂离子电池正极材料组装电池。电化学结果表明,超薄3D-V_(2)O_(5)纳米片的独特结构和沥青炭的协同作用增强了3D-V_(2)O_(5)/C的电子/离子传导速率,使3D-V_(2)O_(5)/C表现出快速的赝电容储锂机制。同时,相比与NR-V_(2)O_(5)和3D-V_(2)O_(5),3D-V_(2)O_(5)/C具有较优的倍率性能和循环性能。在5.0 A/g的大电流密度下3D-V_(2)O_(5)/C具有113 mAh/g的比容量,而在0.1 A/g电流密度下循环50圈后的容量保持率为81%。  相似文献   

16.
以石墨烯为添加剂,利用一步水热法制备出石墨烯包覆三维花状SnS_2纳米结构,制得的复合纳米材料由石墨烯和数十个纳米薄片组装而得的SnS_2纳米花球构成。利用XRD、SEM等对材料的晶体结构和形貌进行表征,同时研究了其电化学性能。在1 000 m A/g的电流密度下循环50次后,SnS_2/石墨烯复合材料的可逆容量仍然可达503.1 m Ah/g,容量保持率高达82%。  相似文献   

17.
设计了一种简单的通过一步水热法制备三维(3D)多孔的Co_3O_4/石墨烯气凝胶(GA)材料。因石墨烯(Graphene)所具有互相连通的三维孔道以及Co_3O_4纳米微球丰富多孔结构,Co_3O_4/GA表现出良好的导电性和赝电容性,是一种优异的用于能量储存装置的电极材料。该Co_3O_4/GA复合物拥有高比表面积(139 m2/g)和较宽的孔径分布(约为1~100nm)。单纯GA的比电容值为175.5 F/g,由于Co_3O_4微球的引入,使复合物气凝胶的比电容值得到了显著提升,在电流密度为1 A/g时,比电容值高达1456.3 F/g。以Co_3O_4/GA为正极、GA为负极、Li OH/PVA为凝胶电解质组装成全固态非对称超级电容器(SASC),当功率密度为648.9 W/kg时,该SASC拥有优异的能量密度(68.1 W·h/kg),说明此Co_3O_4/GA是一种优异的超级电容器电极材料。  相似文献   

18.
以Fe(OH)_3胶体为铁源,探索了一步烧结法制备二维片状结构Fe_2O_3电极材料,考察了烧结温度(400、500、600和700℃)对材料微观结构和储锂性能的影响。结果表明:400℃烧结的样品为α-Fe_2O_3/Fe_3O_4复合材料,其他温度烧结得到的是纯的α-Fe_2O_3;随着烧结温度的升高,组成片状结构致密相连的不规则颗粒逐渐分离,二维片状结构接近坍塌。电化学性能研究发现:500℃下得到的样品电极具有相对较好的储锂性能,在1 A/g的电流密度下循环450圈后放电比容量达628.6 mA·h/g,当电流密度为4 A/g时,放电比容量仍有352.3 mA·h/g。动力学及电极稳定性分析发现,500℃烧结的样品Li~+扩散系数最大(还原峰和氧化峰对应的扩散系数值分别为:1.57×10~(–13)和4.60×10~(–13) cm~2/s),充放电循环过程中结构稳定性最好。  相似文献   

19.
通过水热法制备Bi_2O_3-rGO复合物作为高性能锂离子电池负极材料。Bi_2O_3颗粒均匀分布在石墨烯片层中,形成网络结构。Bi_2O_3-rGO复合物负极材料表现出了优异的电化学性能,在100 m A/g的电流密度下,首次放电比容量为1 438.6 m A·h/g,循环100次后容量为312.1 m A·h/g,高于未包覆的Bi_2O_3粉末(首次放电比容量为1 709.6 m A·h/g,循环100次后容量为47 m A·h/g),且在800 m A/g的电流密度下,容量仍有239.1 m A·h/g。Bi_2O_3-rGO复合物优异的电化学性能主要归因于高的电子导电率、大的比表面积及低程度的结构坍塌。  相似文献   

20.
采用水热反应和高温固相反应方法合成了Fe@Fe_2O_3/石墨烯复合材料。运用扫描电子显微镜(SEM)、X射线衍射(XRD)、光电子能谱仪(XPS)和透射电镜(TEM)对复合材料进行了物理表征。结果表明,Fe@Fe_2O_3/石墨烯复合材料中纳米颗粒均匀分布在石墨烯中,且纳米颗粒具有核壳结构,提出了核壳结构的形成机理。充放电测试结果显示,Fe@Fe_2O_3/GNS复合材料在100mA/g下经过90次循环后,可逆容量仍有959.3 mA·h/g,库伦效率保持在86.4%。此外,在5000 mA/g电流充放电条件下,Fe@Fe_2O_3/GNS复合材料循环280次后,可逆容量维持在515 mA·h/g,表现出较好的大电流充放电循环寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号