首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚己二酸乙二醇-丙二醇酯二醇(PEPA)为软段,分别采用4种二胺扩链剂和3种二异氰酸酯为硬段,通过预聚体法合成了一系列不同硬段结构和含量的聚氨酯脲弹性体,并采用红外光谱、热失重分析、差示扫描量热和拉伸测试等手段,研究了硬段类型及含量对聚氨酯脲性能的影响。结果表明,在软段结构一致,硬段含量接近的情况下,兼具柔性和刚性的硬段有助于提升聚氨酯脲的力学性能、热学性能和微相分离程度。几种二胺扩链剂和二异氰酸酯中,由二苯基甲烷二异氰酸酯(MDI)和4,4'-二氨基二苯醚(ODA)构成的硬段性能最佳;在软、硬段结构一致的情况下,硬段含量对聚氨酯脲性能影响明显。随着硬段含量增加,聚氨酯脲的拉伸强度、微相分离程度先增大后减小,5%热失重温度和断裂伸长率逐渐下降。当PEPA/MDI/ODA摩尔比为1∶0.5∶0.5(硬段含量31.7%),聚氨酯脲拉伸强度达51.5 MPa,断裂伸长率为709%,5%热失重温度为282.7℃,性能最佳。  相似文献   

2.
以聚四氢呋喃醚二醇(PTMG)、聚醚多元醇(EP3600)、环己基甲烷二异氰酸酯(HMDI)为主要原料,以1,4-丁二醇(BDO)为扩链剂,采用半预聚体法合成了一系列聚氨酯弹性体。研究了多元醇配比、预聚体异氰酸根(NCO)含量、扩链剂用量、异氰酸根指数对聚氨酯弹性体性能的影响。结果表明:数均分子量为1000的PTMG(PTMG1000)与EP3600摩尔比为4∶6,预聚体中NCO质量分数为9.5%,BDO质量分数为2%,异氰酸根指数为1.10时,可操作性最好,制备的聚氨酯弹性体力学性能最佳。  相似文献   

3.
以聚四亚甲基醚二醇(PTMG)、甲苯二异氰酸酯(TDI),二甲硫基甲苯二胺(DMTDA,E-300)为原料,甘氨酸-氯化钡半有机晶体(GBD)为分散粒子,采用预聚法制备了聚氨酯/甘氨酸-氯化钡半有机晶体复合材料,并用几种测试方法考察了GBD对复合材料微观和宏观性能的影响。红外测试结果表明,GBD晶体与复合材料中氨酯羰基及软链段中的醚基均有作用,氨酯羰基的氢键化程度提高;力学测试表明,与纯聚氨酯(PU)相比,PU/GBD复合材料的耐撕裂强度有较大幅度的提高,拉伸强度有所提高;原子力显微镜和动态力学性能测试结果表明,GBD晶体的加入对PU的微相分离有促进作用。  相似文献   

4.
聚氧化丙烯多元醇(PPG)型聚氨酯弹性体具有良好的耐水解性和耐候性,但其力学性能和耐热性能不足。本工作以丙氧化季戊四醇(PPG-4,四官能度聚醚多元醇)、4,4'-二苯基甲烷二异氰酸酯(MDI)和PPG-1000为原料,合成含有交联中心的PPG型聚氨酯预聚体,以1,4-丁二醇(BDO)为扩链剂制备微交联PPG型聚氨酯预聚体弹性体。通过拉伸试验、维卡软化温度测试、动态力学性能分析(DMA)、差示扫描量热(DSC)和动态流变等手段,考察了不同PPG-4含量对PPG型聚氨酯弹性体力学性能、热性能和流变性能的影响。研究结果表明,PPG-4的加入可提高PPG型聚氨酯弹性体的拉伸强度、撕裂强度和硬度;微交联PPG型聚氨酯预聚体弹性体的耐热性能显著提升,其维卡软化温度由90℃(PPG-4含量为0%)提高至135℃(PPG-4占PPG-1000含量的3%);DSC与DMA结果表明,微交联PPG型聚氨酯预聚体弹性体的玻璃化转变温度明显提高;流变测试表明,PPG型聚氨酯弹性体的弹性模量、粘性模量和复数黏度均显著提高。  相似文献   

5.
分别以相对分子质量均为2000的聚丙二醇(PPG)、聚四氢呋喃醚二醇(PTMG)、聚己二酸己二醇酯二醇(PHA)和聚己二酸乙二醇酯二醇(PEA)为软段原料,以异佛尔酮二异氰酸酯(IPDI)和小分子多元醇、小分子多元胺为硬段原料制备了系列水性聚氨脂(WPU)膜。通过红外光谱、动态力学热分析,以及溶胀和溶解选择因子、渗透汽化分离苯/环己烷测试对膜的结构和性能进行了表征。研究表明,WPU-PTMG膜硬段结合紧密,WPU-PPG膜溶胀率和渗透汽化通量较大;WPU-PEA膜的酯基密度较大,微相分离程度较高,对苯的亲和性最好;WPU-PHA膜的酯基密度小于WPU-PEA膜,其溶胀率和渗透汽化通量大于WPU-PEA。  相似文献   

6.
分别以相对分子质量均为2000的聚丙二醇(PPG)、聚四氢呋喃醚二醇(PTMG)、聚己二酸己二醇酯二醇(PHA)和聚己二酸乙二醇酯二醇(PEA)为软段原料,以异佛尔酮二异氰酸酯(IPDI)和小分子多元醇、小分子多元胺为硬段原料制备了系列水性聚氨脂(WPU)膜。通过红外光谱、动态力学热分析,以及溶胀和溶解选择因子、渗透汽化分离苯/环己烷测试对膜的结构和性能进行了表征。研究表明,WPU-PTMG膜硬段结合紧密,WPU-PPG膜溶胀率和渗透汽化通量较大;WPU-PEA膜的酯基密度较大,微相分离程度较高,对苯的亲和性最好;WPU-PHA膜的酯基密度小于WPU-PEA膜,其溶胀率和渗透汽化通量大于WPU-PEA。  相似文献   

7.
以聚四氢呋喃醚二醇(PTMG)为软段,甲苯二异氰酸酯(TDI)、二苯基甲烷二异氰酸酯(MDI)、混合异氰酸酯(n(TDI)∶n(MDI)=1∶1)分别为硬段,采用预聚体法合成了一系列不同硬段微区结构的聚氨酯脲弹性体,并通过红外光谱、热重分析、差示扫描量热以及力学表征等方法,研究了不同硬段微区结构与聚氨酯脲(PUU)体系内部微相分离、热稳定性及力学性能的相关性。结果表明,TDI型聚氨酯脲的NH官能团伸缩振动谱带出现在较低位置(3270cm~(-1)),MDI型NH官能团伸缩振动谱带出现在相对较高的位置(3285cm~(-1)),前者的T_g(-57.6℃)低于后者T_g(-49.5℃),而初始降解温度前者(294℃)高于后者(268℃),混合型的均位于两者之间。因此,TDI型PUU表现出较高的微相分离程度和硬段微区有序度,而MDI型微相混合程度较高、且微相混合程度有助于力学性能的改善。随着温度的升高,PUU内部氢键化NH官能团伸缩振动吸收强度逐渐减弱,谱带吸收位置由低波数向高波数移动,力学性能逐渐下降,当温度处于70℃左右时,其波数出现轻微的突越,力学性能也表现出较快的下降趋势。  相似文献   

8.
以聚四氢呋喃醚二醇(PTMG)、4,4′-二苯基甲烷二异氰酸酯(MDI)和1,4-丁二醇(BDO)为原料,通过预聚体法制得不同异氰酸酯(—NCO)基含量预聚体,用BDO作扩链剂合成浇注型聚氨酯(PU)弹性体。考察了预聚体中—NCO基含量对PU弹性体力学性能的影响,用X射线衍射仪、维卡软化点测定仪和热失重分析仪对材料进行分析表征。结果表明:PU弹性体随预聚体—NCO基含量的增加,硬度、拉伸强度、模量和撕裂强度增大,断裂伸长率和冲击弹性下降。当预聚体—NCO基含量为8.0%时,PU弹性体的综合力学性能最佳,拉伸强度和撕裂强度分别是39.4MPa和142.7kN/m;维卡软化温度达到127.5℃,具有较好的热性能。  相似文献   

9.
交联对透明聚氨酯弹性体结构与性能的影响   总被引:8,自引:0,他引:8  
采用一步法以异佛尔酮二异氰酸酯(IPDI)、聚氧四亚甲基二醇(PTMG)、1,4-丁二醇(BD)和聚氧化丙烯三醇(N3010)为原料合成了透明聚氨酯弹性体,通过DSC、FT-IR、TG等方法研究了物理交联和化学交联对聚氨酯弹性体的力学性能、光学透明性和热稳定性的影响。结果表明,尽管聚醚二元醇的分子量增大,但由于硬段间的氢键作用增加,使微相分离程度提高,聚氨酯弹性体的力学强度增加。加入交联剂三元醇N3010,聚氨酯弹性体在硬段间形成化学交联、透度、热稳定性和力学性能与未加交联剂的聚氨酯弹性体相比有明显提高。  相似文献   

10.
以聚四氢呋喃醚二醇-1000(PTMG)、甲苯-2,4-二异氰酸酯(TDI)、3,3-二氯-4,4-二苯基甲烷二胺(MOCA)为原料,采用预聚法合成聚氨酯弹性体,并选用经表面改性的纳米TiO2颗粒对聚氨酯弹性体进行增强,制得聚氨酯复合材料.结果表明:纳米TiO2/聚氨酯复合材料与纳米CaCO3/聚氨酯复合材料、高铬铸铁相比较,具有优异的抗冲蚀磨损性能.  相似文献   

11.
以末端基为羟基的聚二甲基硅氧烷(PDMS)与聚四甲基醚二醇(PTMG)为混合软段合成出一系列含硅氧烷的聚氨酯弹性体。用热重分析(TGA)与Ozawa-Flynn的方法研究了聚合物的热稳定性以及热降解动力学,结果表明,PDMS的引入改善了传统聚氨酯弹性体的热稳定性,合成所得聚合物均具有两个不同的热降解阶段,且随着PDMS含量的增加,聚合物的热稳定性逐渐降低。  相似文献   

12.
傅里叶变换红外光谱衰减全反射谱研究聚氨酯和聚脲   总被引:4,自引:2,他引:2  
用傅里叶变换红外光谱(FTIR)衰减全反射谱(ATR)研究了溶液聚合的四种模型嵌段聚氨酯(聚氨酯-氨酯、聚脲-氨酯、聚氨酯-脲和聚脲-脲)。用ATR谱说明了在硬段微区和硬段微区软段微区的相界面区,不同键对这些聚合物热性质和力学性质的影响,并详细讨论了ATR谱的羟基C=O、醚氧键C—O—C、酰胺Ⅱ谱带及氢键的情况。  相似文献   

13.
含有悬挂链结构的新型聚氨酯阻尼材料的研究   总被引:2,自引:0,他引:2  
在以甲苯二异氰酸酯(TDI)、六亚甲基二异氰酸酯(HDI)、聚四氢呋喃醚二醇(PTMG)、蓖麻油为原料的聚氨酯(PU)弹性体体系中加入了一种新型含有悬挂链结构的二元醇扩链剂,制得新型阻尼材料;论述了硬段及交联剂的种类和配比对PU阻尼性能的影响。结果表明:悬挂链结构二元醇扩链剂的加入,可有效提高PU弹性体在Tg之后的阻尼因子,显著改善其阻尼性能。  相似文献   

14.
以聚碳酸酯二醇(PCDL),六亚甲基二异氰酸酯(HDI)为预聚原料,3,3′-二氯-4,4′-二氨基二苯甲烷(MOCA)为扩链剂,两步法合成了一系列不同硬段含量的聚氨酯脲(PUU)弹性体。采用傅里叶变换红外光谱仪(FTIR)、强力拉伸仪等测试手段对其结构特征和材料的力学性能以及耐水性能进行了研究。结果表明,随着硬段含量的增加,材料的拉伸强度先增大后减小最后又增大,而断裂伸长率和吸水率呈现相反的趋势,并以硬段含量47%为分界点。  相似文献   

15.
为获得深水环境用减振降噪聚氨酯弹性体(PUE),选择甲苯二异氰酸酯(TDI)、聚丙二醇2000(PPG2000)和三乙醇胺(TEA)为原材料浇注制备了PUE,探究硬段含量、R值和合成方法对PUE阻尼性能和压缩模量的影响。结果表明:随着硬段含量的增加,PUE的tanδ峰值减小,压缩模量增强;随着R值的增加,Tg增大,压缩模量先增大后降低,R=2时达到峰值。预聚体法和一步法对合成出PUE的tanδ的影响较小,但预聚体法合成PUE的压缩模量明显优于一步法。增加分子链刚度、氢键化程度和硬段微区分布均匀程度可以有效提升PUE的压缩模量,但会导致阻尼性能下降。  相似文献   

16.
采用聚酯多元醇(PEA)和聚醚多元醇(PTMG)为混合软链段,考察了相同原料组成而不同制备方法对聚氨酯材料力学性能及动态行为的影响。方法一:将PEA和PTMG混合后制成预聚体,用扩链剂(MOCA)扩链后合成聚氨酯;方法二:将PEA和PTMG分别制成备预聚体,按照一定比例取出2种预聚体,再按各自的扩链系数加入MOCA,反应数分钟后将两者混合制备PEA/PTMG混合软链段聚氨酯。动态力学分析表明,不同制备方法对材料的耗能模量及玻璃化转变温度有较大影响,也证实了按照方法二制备的聚氨酯具有多微区结构。论文的研究模式对制备多种不同微区共存的聚氨酯是有益的。  相似文献   

17.
以二聚二醇(Pripol 2033)、二苯基甲烷二异氰酸酯(MDI)和六取代脂肪酸蔗糖酯(Sefose 1618U B6)为原料,通过两步法合成了嵌段共聚聚氨酯弹性体。用热重分析仪和差示扫描量热仪研究了生物基聚氨酯弹性体的热稳定性及玻璃化转变温度,并采用拉伸实验测定材料的机械性能。结果表明:随着Sefose 1618U B6含量的增加,聚氨酯弹性体的拉伸强度和硬段玻璃化转变温度都随之降低,而断裂伸长率和回弹性却逐渐增强。  相似文献   

18.
为了研究多元醇类型对水性聚氨酯防水涂膜材料性能的影响,选用分子量均为1 000的聚酯型、聚醚型多元醇为软段,通过预聚体法制备了一系列水性聚氨酯(WPU)分散体;探讨了WPU的粒径、黏度、结构及结晶性、水抵抗性能。结果表明:制备的WPU分散体粒径较小;聚酯多元醇型[聚己二酸乙二醇酯(PB)、聚碳酸酯(PCL)]WPU膜的拉伸强度、结晶性能高于聚醚多元醇型[聚丙二醇(PPG)、聚四氢呋喃醚二醇(PTMG)]的,但是断裂伸长率低于聚醚多元醇型的WPU膜;其中PTMG型WPU膜的水接触角最大,达到66.5°,吸水率最小(6.2%),防水性最佳,综合性能最好,最适合用作环境友好型纤维织物防水涂膜材料。  相似文献   

19.
以聚四亚甲基醚二醇(PTMG)和4,4′-二苯基甲烷二异氰酸酯(MDI)为原料制备了聚氨酯预聚体,选择1,4-丁二醇进行扩链得到了浇注型聚氨酯弹性体。通过红外光谱对聚氨酯弹性体的特征结构进行了表征,借助软模板法复型得到了径长比为1∶10左右的微米柱阵列结构。通过测试发现该聚氨酯基微米柱阵列结构形貌规整,力学性能优异,阵列有效弹性模量满足"Dahlquist"粘附准则,并且具有良好的疏水性能。  相似文献   

20.
以端羟基聚环氧丙烷(PPO,(?)=1000)和MDI及不同结构的小分子二醇(链延伸剂)用分步法合成了聚醚氨酯弹性体,乒对该弹性体的动态力学性能进行了测试(DDV-Ⅲ-EA)。结果表明:链延伸剂对聚氨酯弹性体的动态力学性能影响颇大,通过改变链延伸剂的结构来改变聚氨酯链中的硬段结构,会导致其硬段间作用(物理相互作用)发生很大改变。因而不同程度地拓宽其阻尼峰,选择适当结构的聚氯酯链延伸剂所合成的弹性体具有化良的阻尼性能,是一类极有前途的粘弹性阻尼材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号