首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以二苯基甲烷二异氰酸酯(MDI)、聚ε-己内酯多元醇(PCL)及1,4-丁二醇(1,4-BDO)为原料,成功设计合成了聚酯型热塑性聚氨酯弹性体(TPU)。合成条件:异氰酸酯指数R=0.98,温度60~70℃,反应时间1 h。通过元素分析、红外光谱、核磁共振、差示扫描量热分析、凝胶色谱等测试,确定了TPU中的硬段含量及化学结构。通过与聚氯乙烯(PVC)进行共混,评价了合成TPU对PVC的增韧效果,经力学性能测试、差示扫描量热分析以及扫描电子显微镜观察研究了共混材料的结构与性能,揭示增韧机理。结果表明,合成TPU与PVC之间具有良好的相容性,对PVC有良好的增韧作用,当m(PVC)∶m(TPU)=170∶30时,力学性能优于市售TPU牌号。合成的TPU随硬段比例增加,PVC/TPU共混物材料拉伸强度变化不大,断裂伸长率下降,而冲击强度大幅提高,实现了对PVC的增韧。  相似文献   

2.
采用挤出注塑的方法制备聚氯乙烯(PVC)和热塑性聚氨酯(TPU)共混材料。探讨了PVC与TPU共混比、增塑剂、热稳定剂、填料等因素对共混材料拉伸强度、断裂拉伸应变等力学性能的影响。结果表明:PVC/TPU(质量比)为70/30,增塑剂为50份,稳定剂为2份,纳米活性碳酸钙为30份时材料的力学性能较好,实现了对PVC的增韧。  相似文献   

3.
采用熔融二步法合成了以聚叠氮缩水甘油醚(GAP)为软段、以2,2-二叠氮甲基-1,3-丙二醇和二环已基甲烷二异氰酸酯(HMDI)为硬段的含能热塑性聚氨酯弹性体(ETPUE),通过红外光谱(FT-IR),差示扫描量热(DSC),动态力学性能测试(DMA)及力学性能测试对材料进行了结构和性能的表征.结果表明,所合成的不同硬...  相似文献   

4.
环氧树脂/超支化聚酯/纳米SiO2复合材料的制备及性能   总被引:1,自引:0,他引:1  
采用超支化聚酯与聚硅酸溶胶共混改性环氧树脂,制备了环氧树脂/超支化聚酯/纳米SiO2三元共混体系纳米复合材料。研究了超支化聚酯/聚硅酸溶胶增韧改性环氧树脂固化体系的力学性能及热性能,通过X射线衍射(WAXD)、差示扫描量热(DSC)、热重分析(TGA)及扫描电镜(SEM)等测试手段对材料的微观相态结构与性能进行了表征。结果表明,超支化聚酯/聚硅酸的加入使纳米复合材料的力学性能和热性能得到明显提高。当纳米SiO2的含量为1%(质量分数,下同)时冲击强度比纯环氧树脂提高了10.48kJ/m2,材料的起始热分解温度也提高了27℃。  相似文献   

5.
采用机械共混的方法制备了聚氯乙烯(PVC)/热塑性聚氨酯弹性体(TPU)共混物,进而通过与无机填料的填充复合,成功制备了PVC/TPU/高岭土复合材料,实现了PVC的增强增韧。探讨了TPU、热稳定剂、无机填料等对PVC/TPU共混材料力学性能和耐油耐溶剂性能的影响,分析了共混物的流变性能和热失重情况,并观察了共混物的断面形貌特征。结果表明,PVC/TPU/改性高岭土为80/16/4,邻苯二甲酸二辛酯(DOP)为8份,有机锡热稳定剂为3份时,综合性能大幅度提高:其拉伸强度比PVC提高了1.4倍,断裂伸长率提高了12.6倍,无缺口冲击强度提高了3.97倍,热稳定性和加工性能也得到改善。  相似文献   

6.
采用兼有脂肪族和芳香族结构的超支化环氧树脂(HBER)增韧改性苯并口恶嗪树脂(MDA),制备出不同质量比的MDA/HBER均相共混体系。通过傅里叶变换红外光谱、差示扫描量热及动态力学性能分析仪研究了共混体系固化行为和交联网络结构。利用流变仪对共混体系进行动态黏度测试,结果表明在60~190℃之间出现一段较宽的低黏度平台。力学性能测试表明,当HBER质量分数为10%时,共混固化物弯曲性能最优,韧性最佳。共混固化物断面形貌呈现出原位增韧增强特征。  相似文献   

7.
采用兼有脂肪族和芳香族结构的超支化环氧树脂(HBER)增韧改性苯并(噁)嗪树脂(MDA),制备出不同质量比的MDA/HBER均相共混体系.通过傅里叶变换红外光谱、差示扫描量热及动态力学性能分析仪研究了共混体系固化行为和交联网络结构.利用流变仪对共混体系进行动态黏度测试,结果表明在60~190℃之间出现一段较宽的低黏度平台.力学生能测试表明,当HBER质量分数为10%时,共混固化物弯曲性能最优,韧性最佳.共混固化物断面形貌呈现出原位增韧增强特征.  相似文献   

8.
采用溶液铸涂法,以3-羟基丁酸酯-3-羟基戊酸酯共聚物(PHBV)对生物可降解聚乳酸(PLA)进行增韧改性,制备出不同配比的PLA/PHBV生物可降解共混包装薄膜,研究了PHBV的添加对共混包装薄膜的热行为和力学性能的影响规律。通过差示扫描量热法(DSC)测试发现,随着PHBV含量的增加,共混包装薄膜的玻璃化温度(Tg)、结晶温度(Tc)和熔点(Tm)都呈现下降趋势;热重分析法(TG)测试表明,PHBV的加入使共混包装薄膜的热稳定性变差;通过力学性能测试发现,当PHBV加入后,共混包装薄膜的拉伸强度和拉伸模量降低,而断裂伸长率明显增加,薄膜的韧性得到了改善。  相似文献   

9.
采用溶液法制备了杂萘联苯聚芳醚腈酮(PPENK)/双马来酰亚胺树脂(BMI)共混体系。通过差示扫描量热法(DSC)对共混体系固化反应动力学进行了研究,固化活化能为85.8 kJ/m2。采用冲击和拉伸实验考察了PPENK含量对共混体系力学性能的影响,共混体系的冲击强度为1.83 kJ/m2~2.95 kJ/m2,拉伸强度为68 MPa~84 MPa,拉伸模量为1.14 GPa~1.53 GPa。通过对固化物断面的扫描电镜(SEM)分析了增韧机理,改性后的BMI树脂在断裂时发生了塑性变形。通过热重分析法(TGA)研究了体系的耐热性,共混体系在氮气气氛中5%热失重温度为420℃~426℃。  相似文献   

10.
通过质子转移聚合,采用双酚A和三羟甲基丙烷三缩水合成了一种芳香族聚醚型超支化环氧(EHBP),将其添加到双酚A缩水甘油醚型环氧(DGEBA)中制备成杂化树脂进行增韧改性。采用酸酐固化后,利用差示扫描量热仪(DSC)和热重分析仪(TGA)对固化树脂的玻璃化转变温度和热稳定性进行了表征,并对其拉伸强度、弯曲强度和冲击强度进行了测试。结果表明向DGEBA中添加EHPE可以在不影响材料热性能和拉伸强度的情况下改善其韧性。在EHBP添加量为15%时,材料的冲击强度由纯DGEBA的19kJ/m2提高到28kJ/m2。扫描电子显微镜对材料冲击断面的形貌的表征表明,EHBP对环氧树脂的增韧机理为原位均相增韧。  相似文献   

11.
采用尼龙弹性体(PAE)对PP进行增韧增强改性,同时添加马来酸酐接枝聚丙烯(MPP)来改善PP与PAE的界面相容性。利用扫描电镜(SEM)、差示扫描量热仪(DSC)等手段及力学性能测试,比较研究了MPP对共混物结晶温度及力学性能的影响。结果表明,PAE适用于PP的增韧改性,且增韧效果取决于三元共混体系中MPP的含量;当所含MPP的质量分数达到3%,共混材料界面相容性好,共混物韧性高。  相似文献   

12.
通过共混方式制备了超支化水性聚氨酯(SWHBPU)共混改性聚氨酯。采用黏度测试表征了的共混乳液的流变性能,通过静态拉伸测试和差示扫描量热法(DSC)考察了共混胶膜的力学性能和热性能,并利用透射电镜(TEM)研究了胶膜微观结构。研究结果表明,SWHBPU的添加可以有效降低聚氨酯乳液的黏度;共混聚氨酯胶膜拉伸强度和断裂伸长率均得到提高,最大升幅分别为124.69%和20.13%,而ΔTg和软硬段微相分离在SWHBPU质量分数为6%时达到最大值,表明力学性能的提高是由聚氨酯微相分离程度的增大造成的。  相似文献   

13.
聚醚型聚氨酯/纳米炭纤维共混体系的热行为和表面分析   总被引:2,自引:0,他引:2  
采用纳米炭纤维 ( nano CF)与聚醚型聚氨酯 ( SEPU)共混复合 ,通过红外光谱、示差扫描量热分析及表面电子能谱分析 ,对该共混体系的热行为和表面化学组成进行了初步的表征与探讨。实验结果表明 ,共混体系中聚醚型聚氨酯的硬段微区含量增大 ,聚醚软段在材料表面的富集程度也得到提高  相似文献   

14.
对聚氯乙烯/氯化聚乙烯/聚乙烯共混体系的研究   总被引:1,自引:0,他引:1  
从动态粘弹谱和力学性能的测试证实氯化聚乙烯(CPE)与聚氯乙烯(PVC)不相容,但可以作为PVC/聚乙烯(PE)的增容剂。对共混物的形态研究发现,在PVC/CPE中加入少量低密度聚乙烯(LDPE)有利于CPE连续网状结构的形成。通过双辊混炼机和Brabender流变仪研究了CPE和PE对PVC的抗冲击性能和加工性能的影响。结果表明,CPE能促进PVC的塑化,LDPE能延缓PVC的塑化。在PVC/CPE(100/10)中加入少量PE可使抗冲击强度大大提高。PVC/CPE/LDPE(100/12/2.5)在20℃的抗冲击强度比PVC/CPE(100/12)高30千焦/米~2以上。采用示差扫描量热计研究了共混物分散状态,实验结果表明混炼时间、混炼温度和混料顺序对共混物抗冲击强度有明显影响。  相似文献   

15.
采用聚天冬氨酸酯(PAEs)与异氟尔酮二异氰酸酯(IPDI)反应制备了氨基封端的聚天冬氨酸酯型聚脲(PUA),将其与三乙烯四胺(TETA)共混并对环氧树脂(EP)进行增韧改性。通过红外光谱仪对合成的PUA结构进行了分析,并利用万能电子试验机、悬臂梁冲击试验仪、差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等对PUA增韧改性EP的力学性能、热性能和断面微观形貌进行了表征和分析。结果表明,成功合成了PUA,且当PUA添加量为55份时,材料的拉伸强度为25.8 MPa,同时,其断裂伸长率为22.6%,剪切强度为17.1 MPa,冲击强度为29.1 kJ/m~2,较纯EP分别提高了约4倍、2.6倍、3.3倍。当PUA添加量为60份时,PUA/EP呈现出明显的相分离"海-岛"结构。  相似文献   

16.
通过熔融共混的方法,采用生物基高分子材料杜仲胶(EUG)对聚乳酸(PLA)进行增韧改性,并制备了PLA/EUG共混物。采用扫描电子显微镜、广角X射线衍射、差示扫描量热分析、动态力学性能测试和旋转流变仪表征了PLA/EUG共混物的相结构、结晶性能、热性能、动态力学性能和流变性能。实验结果表明,聚乳酸与杜仲胶为典型的热力学不相容体系;EUG以微米及亚微米的尺寸分散在聚乳酸中。通过对PLA/EUG共混物的拉伸性能和力学性能研究,发现EUG的加入明显地改变了共混物的拉伸行为,由纯PLA的脆性断裂向韧性断裂转变。当PLA/EUG共混物中PLA/EUG的质量比为90/10时,共混物的断裂伸长率较纯PLA提高了14倍,缺口冲击强度提高了5.8倍。共混物拉伸断面照片表明基体在断裂前发生了明显的塑性变形,在断裂过程中吸收了相当大的能量,从而使得共混物的韧性得以提高。EUG能有效地改善PLA的韧性,可以作为新型的聚乳酸增韧改性剂。  相似文献   

17.
通过熔融共混法制备了不同质量比的聚乳酸(PLA)/热塑性聚氨酯(TPU)共混物。采用旋转流变仪、扫描电镜、电子万能试验机及差示扫描量热仪等研究了共混物的动态流变行为、微观形貌、力学性能和热性能,并通过线材机牵引成直径为1.75 mm左右的线材进行熔融沉积成型(FDM)。结果表明,加入TPU后能提高材料的储能模量,使熔体弹性增强,利于熔融铺丝。TPU能改善材料的冲击韧性,且随着TPU含量的增加而增大。另外,PLA/TPU熔融共混后体系的结晶能力下降,对熔融沉积成型收缩翘曲具有抑制作用。当TPU质量分数为10%时,线材的熔融沉积成型效果最好。  相似文献   

18.
通过熔融共混法制备了不同质量比的聚乳酸(PLA)/热塑性聚氨酯(TPU)共混物。采用旋转流变仪、扫描电镜、电子万能试验机及差示扫描量热仪等研究了共混物的动态流变行为、微观形貌、力学性能和热性能,并通过线材机牵引成直径为1.75 mm左右的线材进行熔融沉积成型(FDM)。结果表明,加入TPU后能提高材料的储能模量,使熔体弹性增强,利于熔融铺丝。TPU能改善材料的冲击韧性,且随着TPU含量的增加而增大。另外,PLA/TPU熔融共混后体系的结晶能力下降,对熔融沉积成型收缩翘曲具有抑制作用。当TPU质量分数为10%时,线材的熔融沉积成型效果最好。  相似文献   

19.
单糖分子为原料,Koenigs-Knorr法合成一种带羧基和多羟基的糖苷衍生物,以此糖苷衍生物为单体制备超支化聚酯。用傅里叶变换红外光谱、核磁共振波谱、凝胶渗透色谱、差示扫描量热分析和热重分析表征中间产物和超支化聚酯结构。超支化聚酯与聚乳酸共混制备复合膜,扫描电镜观测复合膜的相容性,拉力试验测试复合膜的力学性能,差示扫描量热分析复合膜的热性能,接触角测量仪测试复合膜的润湿性。结果表明,成功合成了超支化聚酯目标产物,超支化聚酯的相对分子质量随代数的增加而上升,支化度较高,热稳定性较好。超支化聚酯与聚乳酸相容性良好,共混之后聚乳酸的力学性能、热性能及润湿性均有提高。  相似文献   

20.
基于熔融共混法,采用双转子连续混炼挤出机制备聚乳酸(PLA)/聚己内酯(PCL)可降解共混物,研究PCL含量和转子转速对共混物性能的影响.通过拉伸测试、动态力学分析、热重分析、差示扫描量热分析等测试考察了PLA/PCL共混物的力学性能、热稳定性和结晶性能.结果 表明,PCL对PLA/PCL共混物有明显的增韧效果,同时可提高共混物的热稳定性和结晶性能;提高转子转速可以改善分散相在连续相中的分散分布效果,但转速过高会导致PLA的生热降解和PCL的加剧破裂.当转子转速为500 r/min时,PCL质量分数为40%或50%时,PLA/PCL共混物具有良好的综合性能,此时拉伸强度高于48 MPa、断裂伸长率高于466%、冲击强度高于82 J/m,共混物中PCL相的结晶度高于56.08%、PLA相的结晶度高于52.90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号