首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ethylendiaminetetraacetate (EDTA) is a chelating agent widely used in industry and agriculture. Resistant to chemical and biological degradation EDTA represents a serious ecological problem. In order to avoid the outlet into the environment a new method of EDTA recycling has been proposed. The method involves substituting of the metal ions in EDTA complexes by Cu(II) and formation of an insoluble Cu2EDTA.4H2O compound at the excess of Cu(II) ions in weakly acidic solutions. Cu(II) ions substitute such metal ions as Ni(II), Zn(II), Co(II), Cd(II), Ca(II) and Mg(II). After treatment of the precipitate with water only, acidic or alkaline solutions the copper from the suspension formed can be removed by electrolysis. The highest current efficiency under galvanostatic conditions is in alkaline solutions, however, the highest yield of EDTA recovery is in acidic solutions. FT-IR investigations and chemical analysis of the precipitate formed have shown that in acidic and in alkaline solutions, H4EDTA and Na2H2EDTA.2H2O were formed, respectively. Electrolysis in acidic solutions gives the best results, i.e. the formed H4EDTA contains the highest amount of EDTA (95%) and the lowest amount of copper (0.01%).  相似文献   

2.
In the present work, two industrial vegetable wastes, grape stalk, coming from a wine producer, and exhausted coffee, coming from a soluble coffee manufacturer, have been investigated for the removal of Cu(II) and Ni(II) from aqueous solutions in presence and in absence of the strongly complexing agent EDTA. Effects of pH and metal-EDTA molar ratio, kinetics as a function of sorbent concentration, and sorption equilibrium for both metals onto both sorbents were evaluated in batch experiments. Metal uptake was dependent of pH, reaching a maximum from pH around 5.5. EDTA was found to dramatically reduce metal adsorption, reaching total uptake inhibition for both metals onto both sorbents at equimolar metal:ligand concentrations. Kinetic results were successfully modelled by means of the pseudo second order model. Langmuir and Freundlich models were used to describe the sorption equilibrium data. Grape stalk showed the best performance for Cu(II) and Ni(II) removal in presence and in absence of EDTA, despite exhausted coffee appears as less sensitive to the presence of complexing agent. The performance of Cu(II) and Ni(II) sorption onto grape stalk in a continuous flow process was evaluated. In solutions containing EDTA, an initial metal concentration in the outlet flow corresponding to the complexed metal fraction was observed from the beginning of the process. A high metal recovery yield (>97%) was achieved by feeding the metal-loaded column with 0.05 M HCl.  相似文献   

3.
Chitosan coated perlite beads were prepared by drop-wise addition of slurry, made of chitosan dissolved in oxalic acid and perlite, to an alkaline bath (0.7 M NaOH). The beads that contained 32% chitosan enhanced the accessibility of OH and amine groups present in chitosan for adsorption of copper ions. The experiments using Cu(II) ions were carried out in the concentration range of 50-4100 mg/L (0.78-64.1 mmol/L). Adsorption capacity for Cu(II) was pH dependent and a maximum uptake of 104 mg/g of beads (325 mg/g of chitosan) was obtained at pH 4.5 when its equilibrium concentration in the solution was 812.5 mg/L at 298 K. The XPS and TEM data suggested that copper was mainly adsorbed as Cu(II) and was attached to amine groups. The adsorption data could be fitted to one-site Langmuir adsorption model. Anions in the solution had minimal effect on Cu(II) adsorption by chitosan coated perlite beads. EDTA was used effectively for the regeneration of the bed. The diffusion coefficient of Cu(II) onto chitosan coated beads was calculated from the breakthrough curve and was found to be 2.02 x 10(-8) cm(2)/s.  相似文献   

4.
Separation and isolation of radioactive cobalt ((60)Co), one of the main contributors towards the activity build up in nuclear reactors, is essential for radioactive waste volume reduction during nuclear reactor decontamination procedures. In this context, sorption of free and complexed Co(II), Cu(II) and nitrilotriacetic acid (NTA) on the biosorbent, chitosan was studied. A detailed investigation on the role of pH on sorption of Co(II), Cu(II) and NTA was done. Uptake capacities of the metal ions and NTA were measured within pH range of 2.0-7.0. At pH above 5, the NTA uptake capacities were found to be higher in presence of the metal ions than in their absence. Effect of NTA was found to be more pronounced on copper uptake than on cobalt uptake. Significant change in selectivity of chitosan towards metal ion uptake from NTA medium was observed with respect to change in pH. At pH 2.9, the uptake of cobalt was found to be more than that of copper, while the selectivity was reversed at pH 6.0. The respective selectivity coefficient (k(Co/Cu)) values were found to be 2.06 and 0.072.  相似文献   

5.
Adsorption kinetics and adsorption isotherms of Cu(II) onto a nanosized hydroxyapatite (HAP) in the absence and presence of different low-molecular-weight organic acids are studied in batch experiments. The results show that the adsorption kinetics of Cu(II) onto the HAP are best described by pseudo-second-order model, and the adsorption isotherms of Cu(II) onto the HAP fit Dubinin-Radushkevich model very well with high correlation coefficient (R(2)=0.97-0.99). The amount adsorbed of Cu(II) onto the HAP at pH 5.5 was much higher than that at pH 4.5. The presence of organic acids significantly decreased the adsorption quantity of Cu(II), clarifying the lower sorption affinities of Cu(II)-organic acid complexes onto the HAP rather than Cu(II) ion. The decreased maximal adsorption quantity of Cu(II) onto the HAP increased with the increasing logarithm of cumulative formation constants of Cu(II) and organic acids. The stronger coordination of organic acid with Cu(II), the more decreased Cu(II) adsorption quantity onto the HAP.  相似文献   

6.
Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01 N H(2)SO(4). The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater.  相似文献   

7.
Decontamination of solutions containing EDTA using metallic iron   总被引:1,自引:0,他引:1  
EDTA removal from solutions using metallic iron was carried out at different values of pH, iron load and concentrations at free access of air and in closed vessels. The EDTA destruction was investigated using chemical and capillary electrophoresis analysis. Fe corrosion was studied voltammetrically and the composition of the precipitate formed was investigated using FT-IR spectroscopy and chemical analysis. The EDTA decomposition is remarkably enhanced by the addition of Cu(II) to the EDTA solutions and access of air. The precipitation of the derivatives of insoluble Fe with EDTA or its decomposition products proceeds along with the destruction of EDTA. In closed systems the main EDTA removal reaction is precipitation with iron ions.  相似文献   

8.
The adsorption equilibrium of MOCS and the Cu(II) and Pb(II) ions removal capacity by MOCS in single-(non-competitive) and binary-(competitive) component sorption systems from aqueous solutions were investigated. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Redlich-Peterson isotherms. The characteristic parameters for each isotherm were determined. The Langmuir and Redlich-Peterson isotherms provided the best correlation for both Cu(II) and Pb(II) onto MOCS. From the Langmuir isotherms, maximum adsorption capacities of MOCS towards Cu(II) and Pb(II) are determined at different temperature. The maximum adsorption capacity of Cu(II) and Pb(II) per gram MOCS in single component sorption systems were from 5.91 and 7.71 micromol to 7.56 and 9.22 micromol for the temperature range of 288-318 K, respectively. The order of affinity based on a weight uptake by MOCS was as follows: Pb(II)>Cu(II). The same behavior was observed during competitive adsorption that is in the case of adsorption from their binary solution. The thermodynamic parameters (DeltaG degrees , DeltaH degrees , and DeltaS degrees) for Cu(II) and Pb(II) sorption on MOCS were also determined from the temperature dependence. This competitive adsorption showed that the uptake of each metal was considerably reduced with an increasing concentration of the other, the adsorption of Cu(II) being more strongly influenced by Pb(II) than vice versa due to the higher affinity of MOCS for the latter.  相似文献   

9.
The sorption of lead and cadmium from aqueous solutions by grape stalk waste (a by-product of wine production) was investigated. The effects of the contact time, pH of the solution, ionic medium, initial metal concentration, other metal ions present and ligands were studied in batch experiments at 20 degrees C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was described well by the Langmuir isotherm model, with maximum grape stalk sorption capacities of 0.241 and 0.248 mmol g(-1) for Pb(II) and Cd(II), respectively, at pH around 5.5. Kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model. The presence of NaCl and NaClO(4) in the solution caused a reduction in Pb and Cd sorption, the latter being more strongly suppressed. The presence of other metals in the uptake process did not affect the removal of Pb, while the Cd uptake was much reduced. HCl or EDTA solutions were able to desorb lead from the grape stalks completely, while an approximately 65% desorption yield was obtained for cadmium. From the results obtained it seems that other mechanisms, such as surface complexation and electrostatic interactions, must be involved in the metal sorption in addition to ion exchange.  相似文献   

10.
Carapace from the edible crab was assessed for the biosorption of Hg from aqueous solutions. Batch adsorption studies were used to determine the effects of contact time, pH, concentration, particle size and Cu(II) as a co-ion. The removal of Hg was fast and efficient, attaining >80.0% from 500 mg/L by 60 min. Specific uptake increased from 0.1 to 13.0mg/g as initial concentration increased from 0.5 to 1000 mg/L while the removal efficiency decreased from 100.0% over the 0.5-10.0mg/L range to 65.0% at 1000 mg/L. As particle size decreases from >2.5 to <0.15 mm, the Hg uptake increased from 1.4 to 8.3mg/g. In binary metal solutions, Cu(II) reduced the Hg removal by 80.0% while the presence of Hg increased Cu(II) removal by approximately 7.0%. Crab carapace is a readily available alkaline waste and easily processed into durable granular forms. Therefore, it offers potential as a low-cost alternative to commercial adsorbents or as a complimentary polishing process for the removal of Hg from acidic solutions.  相似文献   

11.
Sludge ash/hydrated lime on the geotechnical properties of soft soil   总被引:1,自引:0,他引:1  
Modified chitosan such as chitosan alpha-ketoglutaric acid (KCTS) and hydroxamated chitosan alpha-ketoglutaric acid (HKCTS) are successfully prepared. The resulting polymers were characterized by 13C NMR and X-ray diffraction (XRD), respectively. A adsorption system was applied to study the adsorption of Zn(II) ion onto chitosan derivatives. The isothermal sorption kinetics of chitosan derivatives for Zn(II) ion has been investigated. The kinetics experimental data correlated well with the second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. The adsorption mechanism of chitosan derivatives with Zn(II) was studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results indicated that the nitrogen in amino group and the oxygen in carboxyl group of KCTS were coordination atoms. N atom of amino group, O atom of hydroxamic acid and O atom of carbonyl group in HKCTS coordinated with Zn(II).  相似文献   

12.
Maximum sorption of Cu(II) and Pb(II) by dried filamentous green alga Pithophora oedogonia occurred at pH 4.5 and 5.0, respectively. Chemical pretreatment could not appreciably enhance the metal sorption ability of the biomass. HCl and EDTA desorbed 92-96% of the sorbed metal from the metal-loaded biomass. Sorption and desorption of both the test metals were very rapid attaining an equilibrium within 15 min. The time course data of both the processes fitted well to the pseudo-first and the pseudo-second-order Lagergren kinetic models with r2> or =0.979. The isotherm equilibrium of Cu(II) and Pb(II) followed the Redlich-Peterson and Sips model very well with r2> or =0.991. The sorption of Cu(II) and Pb(II) at varying biomass doses could be well defined by linear and hyperbolic decrease, respectively. The regenerated biomass of Pithophora has better reusability for Pb(II) than for Cu(II). A good mechanical strength of Pithophora biomass was apparent as only 10-15% loss of biomass occurred at the end of the fifth cycle.  相似文献   

13.
Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.  相似文献   

14.
Co-adsorption of norfloxacin (Nor) and Cu(II) on montmorillonite at pH 4.5, 7.0 and 9.0 was studied by integrated batch adsorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy. Under such pH conditions the dominant species of Nor are cation (Nor(+)), zwitterion (Nor(±)), and anion (Nor(-)), respectively. Results indicated that Nor sorption decreased with an increase of solution pH. The presence of Cu(II) slightly suppressed the Nor(+) sorption at pH 4.5, while increased Nor(±) and Nor(-)sorption on montmorillonite at pH 7.0 and 9.0, respectively. In contrast, Nor increased Cu(II) adsorption at pH 4.5, but had little effect on the adsorption of Cu(II) on montmorillonite at pH 7.0 and 9.0. Spectroscopic results showed that, at pH 4.5, Nor(+) was sorbed on montmorillonite by the formation of outer-sphere montmorillonite-Nor-Cu(II) ternary surface complex. At pH 7.0, montmorillonite-Nor-Cu(II) and montmorillonite-Cu(II)-Nor ternary surface complexes co-exist. At pH 9.0, montmorillonite-Cu(II)-Nor ternary surface complex was likely formed, which was different to Cu(II)(Nor)(2) precipitate of the solution.  相似文献   

15.
Indian fly ash has been completely converted to crystalline porous 13X zeolite by NaOH fusion at 600 degrees C followed by hydrothermal treatment at 105 degrees C for 20 h. Obtained materials were characterized by XRD, SEM and surface area measurement. Prepared material was used for the sorption study of different metal ions (Cu(2+), Co(2+) and Ni(2+)) at different pH, temperature. Thermodynamic data (DeltaS, DeltaH and DeltaG) corresponding to different metal ion uptake were evaluated from Langmuir equation. In all the experiment sorption capacity of prepared zeolite was found to be quite high than that of fly ash at acidic pH. However, the uptake selectivity order for both the materials is Cu(2+)>Co(2+)>Ni(2+).  相似文献   

16.
In this study, sporopollenin of Lycopodium clavatum spores was used for the sorption experiment. Glutaraldehyde (GA) immobilized sporopollenin (Sp), is employed as a sorbent in sorption of selected heavy metal ions. The sorbent prepared by sequential treatment of sporopollenin by silanazing compound and glutaraldehyde is suggested for sorption of Cu(II), Zn(II) and Co(II) from aqueous solutions. Experimental conditions for effective sorption of heavy metal ions were optimized with respect to different experimental parameters using batch method in detail. Optimum pH range of Cu(II) has occurred at pH ≥ 5.5 and Zn(II), Co(II) at pH ≥ 5.0, for the batch method. All of the metal ions can be desorbed with 10 cm3 of 0.5 mol dm−3 of ethylenediaminetetraacetic acid (EDTA) solution. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm equations were applied to the experimental data. Thermodynamic parameters such as free energy (ΔGo), entropy (ΔSo) and enthalpy (ΔHo) were also calculated from the sorption results used to explain the mechanism of the sorption. The results indicated that this sorbent is successfully employed in the separation of trace Cu(II), Zn(II) and Co(II) from the aqueous solutions.  相似文献   

17.
Heavy metals and suspended solid (SS) needed to be removed from the recirculation of dual-alkali flue gas desulfurization (FGD) system. The feasibility of coprecipitation of heavy metal and SS by water-soluble chitosan was studied in a lab scale experiment. The association between chitosan and metal ions was verified through DSC and FT-IR. The pH investigation revealed that at the pH ranged from 5 to 9, there were three stages for different actions: adsorption of chitosan for Mn(II), precipitation of manganese hydroxide and coprecipitation of manganese hydroxide and chitosan-Mn(II) complex. The ion selectivity experiments showed that the occurrence of Ca(II) in the solution had little influence on the adsorption of chitosan for Mn(II). The decrease rate of adsorption capacity was about 0.0023 mmol g(-1) per 1 mg L(-1) Ca(II). When adsorption and flocculation of chitosan occurred at the same time and at the sufficient addition of chitosan, chitosan not only made solids flocculate but also enhanced sorption capacity of chitosan. Application of chitosan for coprecipitation of Mn(II) and SS could remove Mn(II) efficiently and improve the settling characteristics of SS from dual-alkali FGD regenerating process.  相似文献   

18.
Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.  相似文献   

19.
Tan S  Liu Z  Zu Y  Fu Y  Xing Z  Zhao L  Sun T  Zhou Z 《Nanotechnology》2011,22(15):155703
The adsorption of chitosan onto highly ordered pyrolytic graphite(HOPG) surfaces and its applications have been studied by atomic force microscopy (AFM). The results indicated that chitosan topography formed on the HOPG surface significantly depends on the pH conditions and its concentration for the incubation. Under strongly acidic conditions (pH < 3.5) and at a concentration of 1 mg ml?1, chitosan formed into uniform network structures composed of fine chains. When the solution pH was changed from 3.5 to 6.5, chitosan tends to form a thicker film. Under neutral and basic conditions, chitosan changed into spherical nanoparticles, and their sizes were increased with increasing pH. Dendritic structures have been observed when the chitosan concentration was increased up to 5 mg ml?1. In addition, the chitosan topography can also be influenced by ionic strength and the addition of different metal ions. When 0.1 M metal ions Na+, Mg2+, Ca2+ and Cu2+ were added into the chitosan solution at pH 3.0 for the incubation, network structures, branched chains, block structures and dense networks attached with many small particles were observed, respectively. The potential applications of these chitosan structures on HOPG have been explored. Preliminary results characterized by AFM and XPS indicated that the chitosan network formed on the HOPG surface can be used for AFM lithography, selective adsorption of gold nanoparticles and DNA molecules.  相似文献   

20.
The preparation, characterization, and sorption properties for Cu(II) and Pb(II) of manganese oxide coated sand (MOCS) were investigated. A scanning electron microscope (SEM), X-ray diffraction spectrum (XRD) and BET analyses were used to observe the surface properties of the coated layer. An energy dispersive analysis of X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS) were used for characterizing metal adsorption sites on the surface of MOCS. The quantity of manganese on MOCS was determined by means of acid digestion analysis. The adsorption experiments were carried out as a function of solution pH, adsorbent dose, ionic strength, contact time and temperature. Binding of Cu(II) and Pb(II) ions with MOCS was highly pH dependent with an increase in the extent of adsorption with the pH of the media investigated. After the Cu(II) and Pb(II) adsorption by MOCS, the pH in solution was decreased. Cu(II) and Pb(II) uptake were found to increase with the temperature. Further, the removal efficiency of Cu(II) and Pb(II) increased with increasing adsorbent dose and decreased with ionic strength. The pseudo-first-order kinetic model, pseudo-second-order kinetic model, intraparticle diffusion model and Elovich equation model were used to describe the kinetic data and the data constants were evaluated. The pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) and Pb(II) onto MOCS, suggesting that the adsorption mechanism might be a chemisorption process. The activation energy of adsorption (E(a)) was determined as Cu(II) 4.98 kJ mol(-1) and Pb(II) 2.10 kJ mol(-1), respectively. The low value of E(a) shows that Cu(II) and Pb(II) adsorption process by MOCS may involve a non-activated chemical adsorption and a physical sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号