首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用超声分散,球磨混合和热压成型制备超高分子量聚乙烯(PE-UHMW)/氧化石墨烯(GO)纳米复合材料,并对其进行Gamma辐照和加速老化处理。采用万能材料试验机测试复合材料的压缩强度,采用摩擦磨损试验机测试复合材料的干摩擦磨损性能。结果表明,辐照的PE-UHMW/GO的压缩强度比未辐照的PE-UHMW/GO增加6.109%,辐照+加速老化的PE-UHMW/GO的压缩强度比辐照的PE-UHMW/GO下降14.747%。GO和辐照增加了PE-UHMW的平均摩擦系数,辐照+加速老化的PE-UHMW/GO的平均摩擦系数最大,其值为0.168。添加GO和辐照降低了PE-UHMW的平均磨损率,辐照的PE-UHMW/GO的平均磨损率最低,为1.666×10-4mm3/(N·m);辐照+加速老化增加了PE-UHMW的平均磨损率,GO能抑制PE-UHMW磨损性能降低。辐照与辐照+加速老化的PE-UHMW/GO的磨损形式主要是疲劳磨损,而辐照+加速老化的PE-UHMW的磨损形式主要为磨粒磨损。  相似文献   

2.
采用机械粉碎法对废弃线缆绝缘料(交联聚乙烯)进行处理,制备出废弃交联聚乙烯粉碎料。将交联聚乙烯(XLPE)、高密度聚乙烯(HDPE)、蒙脱土(OMMT)按照比例配好,使用双螺杆挤出机将XLPE/HDPE/OMMT复合材料熔融塑化并混合均匀,挤出造粒。再使用微型注塑机将复合材料注塑成型。然后分别使用冲击试验机、电动塑料洛氏硬度仪、摩擦磨损机测试复合材料的缺口冲击强度、硬度及摩擦学性能。通过电子扫描显微镜(SEM)观察复合材料的冲击断面、拉伸断面、摩擦磨损表面等。实验结果表明,随着OMMT的不断增加,缺口冲击性能呈现先增强后减弱的趋势,并且当复合材料的OMMT填充量为6%时,缺口冲击强度达到最高峰,比OMMT零添加量的复合材料提高了18.33%。复合材料的摩擦系数有所提高,各个比例的比磨损率均比XLPE/HDPE材料低。该回收方法为回收废弃电缆进行二次利用、响应国家绿色环境政策、缓解塑料污染提供一种新的思路。  相似文献   

3.
为比较碳化硅(SiC)含量对聚氯乙烯(PVC)/竹粉木塑复合材料性能的影响,以竹粉为木质纤维,PVC为基体材料,用挤出成型方法制备了不同含量SiC的PVC/竹粉复合材料,对其力学性能、摩擦磨损性能及蠕变性能测试分析。结果表明:当SiC质量分数为3%时,PVC/SiC/竹粉复合材料拉伸强度和冲击强度性能较好,较未添加SiC的PVC/竹粉复合材料分别高出29.0%,4.2%;SiC质量分数为3%时,摩擦系数、磨损失重率最小分别为0.428 5,0.151%;添加1.5%SiC的PVC/竹粉复合材料弯曲强度最高,为36.6 MPa。蠕变应力值为3.552 8 MPa时,SiC含量对PVC/竹粉木塑复合材料应变影响相近,其中,PVC/竹粉/1.5%SiC复合材料应变值最小;应力值为7.105 6 MPa、10.658 4 MPa时,PVC/竹粉/3.0%SiC复合材料应变值最小。  相似文献   

4.
采用电子万能试验机、环-块式摩擦试验机和扫描电子显微镜等分析表征手段,考察了针状硅灰石与石墨(Gr)和Cr2O3并用对聚四氟乙烯(PTFE)复合材料摩擦磨损性能的影响。结果表明,随着硅灰石含量的增加,PTFE/硅灰石复合材料的磨损率逐渐降低,而摩擦系数呈现出先降低后增加的趋势。在15%(质量分数,下同)硅灰石的基础上添加10%Gr时,复合材料的磨损率降低到0.22×10-5 mm3/(N·m),摩擦系数略有增大。进一步添加1%Cr2O3代替相应含量的Gr时,PTFE/硅灰石/Gr/Cr2O3复合材料表现出最低的磨损率,仅有0.13×10-5 mm3/(N·m),对应的摩擦系数为0.25。磨损机理分析表明:适量硅灰石在摩擦过程中起到了较好的支撑载荷作用,阻止了对偶上微凸体对摩擦表面的嵌入;在此基础上继续添加9%Gr和1%Cr2O3时,对偶上形成了非常致密完整、薄且均匀的转移膜,表现为轻微的磨粒磨损特征。  相似文献   

5.
用过氧化二叔丁基(DTBP)、乙烯基三乙氧基硅烷(A-151)化学交联改性超高分子量聚乙烯(UHMWPE)复合材料,再用模压法制备试样。利用摩擦磨损试验机测试不同的摩擦速度、方式,化学交联剂添加量对复合材料摩擦磨损性能的影响,并通过扫描电子显微镜(SEM)观察表面形貌分析磨损机理。结果表明,当加入约0.25%DTBP、A-151交联剂时,UHMWPE的摩擦系数最小,比纯UHM WPE下降了26.3%、44.9%;当加入约0.45%DTBP、A151交联剂时,材料的比磨损率降低了60.9%、82.04%;化学交联后的材料由原来的磨粒磨损为主变成了后来的疲劳磨损为主,耐磨性显著提高。  相似文献   

6.
采用改进的Hummer法制备了氧化石墨烯(GO),采用溶液共混法制备出氧化石墨烯/超高摩尔质量聚乙烯(GO/UHMWPE)复合材料。研究了GO/UHMWPE复合材料的拉伸力学性能和摩擦磨损性能;通过扫描电子显微镜(SEM)观察复合材料的磨损表面,并对其磨损机理进行分析。结果表明,GO的添加提高了GO/UHMWPE复合材料的屈服强度和拉伸强度,降低了其断裂伸长率,其中,当GO质量分数为0.1%时效果最佳;GO填料改善了UHMWPE的抗磨损性能,当GO质量分数为0.1%时,磨损率最低,相比未填充时降低了38.5%。  相似文献   

7.
通过添加白石墨烯以及白石墨烯复配聚四氟乙烯(PTFE)制备了系列白石墨烯/聚甲醛(BN/POM)复合材料。分别研究了白石墨烯含量以及白石墨烯复配不同含量PTFE对POM摩擦材料力学性能和摩擦磨损性能的影响。从测试结果可以看出,随着白石墨烯含量的增加,BN/POM复合材料的拉伸强度略有降低,弯曲模量有明显增加;BN/POM复合材料摩擦系数逐步增加,磨损呈现先增加再降低然后再增加的趋势。固定白石墨烯含量(1份),随着PTFE含量的增加,复合材料的拉伸强度、弯曲强度和弯曲模量依次降低;摩擦系数依次降低,磨损呈现先降低,然后又趋于平缓的现象。  相似文献   

8.
将硼酚醛树脂(BPR)与普通酚醛树脂(PF)熔融共混,再加入经过碱处理的剑麻纤维(SF),通过模压成型工艺制备BPR/SF/PF复合材料。利用定速式摩擦试验机和电子万能试验机研究了BPR含量对复合材料摩擦磨损性能及力学性能的影响,采用扫描电镜观察了复合材料磨损表面的形貌。结果表明:在BPR/PF=50/100时,与普通PF/SF复合材料相比,BPR/SF/PF复合材料在300℃下的磨损率降低了42%,冲击强度提高了14%,弯曲强度和弯曲模量分别提高了25%和36%;复合材料磨损面形貌显示,加入BPR后,复合材料由疲劳磨损转变为磨粒磨损。  相似文献   

9.
为探究玄武岩纤维在树脂基摩擦材料中的应用,采用热模压工艺制备了玄武岩纤维质量分数为0~20%的树脂基复合材料,对其进行摩擦磨损性能试验,并检测硬度和抗剪强度,观察磨损表面微观形貌,探讨其磨损机制。结果表明:向树脂基摩擦材料中添加玄武岩纤维,具有显著提高材料的硬度、抗剪强度,降低磨损率,增大摩擦系数和热衰退温度的作用。玄武岩纤维增强的摩擦材料硬度越高,摩擦系数越大,剪切强度和硬度越高,磨损率越小;当玄武岩纤维含量为15%时,磨损率最低,达到0.23 cm~3/(N·m);当玄武岩纤维含量为20%时,摩擦系数最大,达到0.45。玄武岩纤维增强的树脂基摩擦材料,其磨损机理以磨粒磨损为主。  相似文献   

10.
为推动超高分子量聚乙烯(UHMWPE)在医学材料领域的应用,通过模压成型法制备氧化石墨烯(GO)/UHMWPE复合材料,并在干摩擦环境、去离子水及小牛血清中研究复合材料摩擦学行为。结果表明,随着GO的添加,复合材料的硬度明显增加。复合材料的摩擦系数在干摩擦过程中最大,去离子水过程中次之,小牛血清中最小。此外,同样条件下,GO/UHMWPE复合材料摩擦系数均比纯UHM WPE的大。三种条件下,磨损率与摩擦系数呈现相同的趋势,但是同样条件下,GO/UHMWPE复合材料磨损率明显小于纯UHM WPE。最后结合磨痕表面微观形貌,揭示不同摩擦环境下材料的磨损机制。  相似文献   

11.
以碳纤维(CF)为增强相,添加不同含量的纳米氮化硼(h-BN),通过注塑成型的方式,制备了聚醚醚酮/聚四氟乙烯(PEEK/PTFE)复合材料样条,使用力学试验机进行拉伸试验,利用摩擦试验机进行表面摩擦试验,并利用白光仪对磨痕数据和三维形貌进行观测,使用SEM对磨痕进行观测与分析。结果表明:随着h-BN含量的增加,PEEK/PTFE复合材料样条最大应力先增加后减小;当h-BN含量分别为3%、6%时,PEEK/PTFE复合材料样条的最大应力分别为174 MPa、165 MPa。与PEEK/PTFE相比,单独添加CF的样品摩擦系数降至0.23。同时添加CF、h-BN时,复合材料样条的摩擦系数均降低;h-BN含量分别为3%、6%时,复合材料样条的摩擦系数分别为0.06、0.09。随着h-BN含量的升高,PEEK/PTFE/CF/h-BN复合材料的磨损率先降低后升高。h-BN含量为3%时,复合材料样条的磨损率最低。  相似文献   

12.
采用熔融共混注射法制备了陶瓷粉/高密度聚乙烯复合材料;研究了不同陶瓷粉加入量的复合材料在干摩擦(50、110 N)条件下的摩擦系数及磨损率,测试了复合材料的硬度及热稳定性能,并利用扫描电镜观察了陶瓷粉与基体的界面形貌及磨损表面形貌。结果表明:陶瓷粉的加入改善了复合材料的干摩擦性能;当陶瓷粉加入量为20%、载荷为110 N时,复合材料的摩擦系数比未添加陶瓷粉的高密度聚乙烯增大了11. 5%,而磨损率降低了38. 8%;复合材料的磨损机理由纯高密度聚乙烯的粘着磨损(50 N)或粘着磨损和疲劳磨损共存转变为磨粒磨损(110 N)。复合材料干摩擦性能的改善是由于陶瓷粉与基体具有良好的界面结合,陶瓷粉提高了复合材料的硬度及热稳定性。  相似文献   

13.
为了改善传统均苯四甲酸酐(PMDA)–4,4′-二胺基二苯醚(ODA)型聚酰亚胺(PI)的摩擦性能,分别以共聚和共混两种方式,引入柔性二胺单体芳香杂环二胺(DAMI),从分子结构制备不同ODA/DAMI物质的量之比的共聚和共混改性PI。并用摩擦磨损试验机、扫描电子显微镜、万能试验机以及X射线衍射仪等分析共聚和共混改性PI的结构和性能。结果表明,当ODA/DAMI物质的量之比分别为3∶1和5∶1时,共聚和共混改性PI具有最优的综合摩擦磨损性能,摩擦系数分别为0.273和0.280,磨损率分别为9.28×10–14,11.2×10–14 m3/(N·m)。共聚改性PI的摩擦系数随摩擦时间的增加变化比较稳定,其在兼顾磨损率和摩擦系数方面比共混改性PI更具优势。共聚和共混法改性PI磨损机理相似,主要为粘着磨损、磨粒磨损和疲劳磨损。随DAMI含量增加,两种改性PI的拉伸强度、拉伸弹性模量和玻璃化转变温度均呈下降趋势,当DAMI含量较高时,两种改性PI结晶取向增加,磨损率急剧升高。  相似文献   

14.
吴迪  白志民  张晶 《硅酸盐学报》2021,(10):2078-2088
将机械力化学改性后的凹凸棒石和硅灰石粉体添加到聚四氟乙烯(PTFE)中,通过机械搅拌、冷压烧结制成矿物/聚合物复合材料。采用X射线衍射、Fourier变换红外光谱、扫描电子显微镜、热重–差热同步热分析、偏光显微镜、X射线光电子能谱、邵氏硬度计和环块摩擦磨损试验机对复合材料的理化性能及其摩擦磨损特征进行了研究。结果表明:添加凹凸棒石和硅灰石后,PTFE复合材料的结晶度、玻璃转化温度降低,硬度增加,摩擦系数稍有增加但磨损率显著降低。研究认为,凹凸棒石和硅灰石有利于金属摩擦副表面转移膜的形成,有效改善了PTFE复合材料与对偶金属摩擦副摩擦界面的自适应性,是导致摩擦副磨损率显著降低的主要原因。  相似文献   

15.
采用粉末冶金方法制备了含莫来石的铜铁基复合材料,通过分别添加0~25%(体积分数)工业莫来石和高纯莫来石,对比两者含量对复合材料基本特性及摩擦磨损性能的影响,研究了石墨含量对摩擦系数的调节作用,分析了莫来石粒度对复合材料摩擦性能的影响。结果表明:随着莫来石添加量的增加,复合材料致密度降低、硬度上升、弯曲强度下降。复合材料摩擦系数均在两莫来石含量为15%时最大,磨损率均在莫来石含量为5%时最小。相比高纯莫来石,粒度分布宽、颗粒形态多样的工业莫来石对复合材料的弯曲强度和磨损率均产生不利影响。石墨含量为15%(体积分数)时,含工业莫来石(15%)复合材料的摩擦系数在0.3~0.4,且磨损率较低。分级筛选后的大尺寸工业莫来石颗粒有利于增大摩擦系数,球磨细化后的小尺寸工业莫来石颗粒对增大摩擦效果有限,且磨损率较高。  相似文献   

16.
以丁腈橡胶改性酚醛树脂为基体,芳纶/玻纤/钢/铜纤维混杂制备摩擦材料,在干摩擦条件下通过摩擦磨损试验机测试其摩擦学性能,并用扫描电镜(SEM)对摩擦材料的表面磨损形貌进行观察分析,研究不同混杂纤维成分对摩擦材料性能的影响。结果表明,滑动速率增大,材料的摩擦系数、磨损率均减小;实验载荷增大,材料的摩擦系数、磨损率呈现波动状态,未见明显变化趋势。摩擦过程中,含有四种混杂纤维的材料磨损形式为犁沟和塑性变形;未含有芳纶/玻纤混杂纤维的材料磨损形式主要为疲劳磨损;未含有钢/铜混杂纤维的材料磨损形式主要为黏着磨损。由此可见,添加混杂纤维可以有效提高材料的摩擦系数,降低磨损率,并且明显改善材料的摩擦学性能。  相似文献   

17.
造纸黑液干粉用量对PVC/CPE热塑性弹性体性能的影响   总被引:1,自引:1,他引:0  
以造纸黑液经硫酸中和处理脱水后的黑液干粉为填料,采用熔融共混法制备了聚氯乙烯(PVC)/氯化聚乙烯(CPE)/黑液干粉热塑性弹性体复合材料。利用FTIR和TGA测试了黑液干粉的结构和热性能;利用微控电子万能试验机、TGA研究了黑液干粉含量对弹性体复合材料的力学性能、热降解性能和老化性能的影响。结果表明:黑液干粉中木质素等有机物含量为33%;添加黑液干粉能改善PVC/CPE弹性体复合材料的力学性能,当黑液干粉含量为30phr时,拉伸强度保持不变,断裂伸长率提高了8%,撕裂强度提高了5%;采用硬脂酸处理的黑液干粉,其用量为30phr时,复合材料综合性能较佳,其拉伸强度提高了7%,断裂伸长率提高了12%,撕裂强度提高了18%;黑液干粉含量30phr时,PVC/CPE弹性体复合材料热降解温度提高了5℃;添加黑液干粉的复合材料,在热氧老化后拉伸强度和邵尔A型硬度增加,断裂伸长率稍有下降。  相似文献   

18.
研究了芳纶纤维增强丁腈橡胶(NBR)复合材料的物理机械性能和摩擦性能,并用扫描电子显微镜分析了芳纶纤维增强NBR复合材料的磨损表面和磨屑形貌。结果表明,芳纶的加入提高了NBR的拉伸强度;随着芳纶用量的增大,复合材料的扯断伸长率降低;芳纶的加入降低了NBR的摩擦系数和磨损率;当芳纶用量为20份时,复合材料的综合性能最佳。加入芳纶对NBR摩擦磨损形式的改变是NBR摩擦性能提高的重要原因。  相似文献   

19.
采用双螺杆挤出机制备聚酰胺66(PA66)/碳纤维/玻璃纤维材料和PA66/碳纤维材料,另外加入相容剂马来酸酐接枝聚烯烃弹性体(POE–g–MAH)来改善相界面的相容性,同时评价其力学性能和摩擦磨损性能。结果表明:在碳纤维增强PA66材料的研究过程中引入玻璃纤维可降低最高界面温度并且使摩擦系数降低,有助于改善PA66材料的摩擦学性能,共混物的摩擦过程以磨粒磨损和粘着磨损为主。此外,在添加入玻璃纤维后,15%混杂纤维填充比15%碳纤维单独填充的PA66材料拉伸强度提高9.89%,冲击强度提高34.02%;而添加入20%混杂纤维与20%碳纤维单独填充的PA66材料相比,拉伸强度提高了71.65%,冲击强度提高了26.23%。  相似文献   

20.
分别采用乙烯–乙酸乙烯酯共聚物(EVAC)、氯化聚乙烯(CPE)和苯乙烯–丁二烯–苯乙烯共聚物(SBS)三种弹性体为增韧剂,研究增韧剂种类及用量对聚氯乙烯(PVC)/丙烯腈–丁二烯–苯乙烯塑料(ABS)复合材料冲击强度、拉伸强度和极限氧指数的影响,并对纳米CaCO_3填充改性PVC/ABS复合材料的力学性能、熔体流动速率和极限氧指数(LOI)进行探讨。结果表明,采用CPE增韧改性的PVC/ABS复合材料的力学性能和阻燃效果均优于EVAC和SBS改性体系;PVC/ABS/CPE/CaCO_3复合材料的缺口冲击强度在纳米CaCO_3用量为6份时达到极大值,随着纳米Ca CO3用量的增加,拉伸强度和弯曲强度逐渐下降,LOI有所降低,在纳米CaCO_3用量为4份时材料的加工流动性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号