首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New LaMgAl11O19 (LaMA)/YSZ double ceramic top coat thermal barrier coatings (TBCs) with the potential application in advanced gas-turbines and diesel engines to realize improved efficiency and durability were prepared by plasma spraying, and their thermal cycling failure were investigated. The microstructure evolutions as well as the crystal chemistry characteristics of LaMA coating which seemed to have strong influences on the thermal cycling failure of LaMA and the new double ceramic top coat TBCs based on LaMA/YSZ system were studied. For double ceramic top coat TBC system, interface modification of LaMA/YSZ by preparing thin composite coatings seemed to be more preferred due to the formations of multiple cracks during thermal cycling making the TBC to be more strain tolerant and as well as resulting in an improved thermal cycling property. The effects of the TGO stresses on the failure behavior of the TBCs were discussed through fluorescence piezo-spectroscopy analysis.  相似文献   

2.
It is generally known that the porosity of thermal barrier coatings is essential to guarantee a sufficiently high strain tolerance of the coating during thermal cycling. However, much less is known about the influence of the specific morphology of porosity, such as microcracks and typically larger pores, on the performance of the coatings. Both features are usually formed during plasma spraying of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs). In this investigation, the influence of microcracks on the thermal cycling behavior was studied. The amount of microcracks within YSZ thermal barrier coatings was changed by changing the powder-feeding rate. Only small changes of the total porosity were observed. Mercury porosimetry served as a tool to investigate both the amount of microcracks and pores in the coating. Additionally, microcrack densities were determined from metallographical investigations. A linear dependence between the amount of fine pores determined by Hg porosimetry and the crack density was obtained for one set of coatings. Thermal cycling TBC specimens with different microcrack densities were produced and tested in a gas burner test facility. At high surface temperatures (above 1300 °C), failure occurred in the ceramic close to the surface. Under these conditions, the samples with increased horizontal microcrack densities showed a significant increase of thermal cycling life.  相似文献   

3.
Gas turbines provide one of the most severe environments challenging material systems nowadays. Only an appropriate coating system can supply protection particularly for turbine blades. This study was made by comparison of properties of two different types of thermal barrier coatings (TBCs) in order to improve the surface characteristics of high temperature components. These TBCs consisted of a duplex TBC and a five layered functionally graded TBC. In duplex TBCs, 0.35 mm thick yittria partially stabilized zirconia top coat (YSZ) was deposited by air plasma spraying and ~0.15 mm thick NiCrAlY bond coat was deposited by high velocity oxyfuel spraying. ~0.5 mm thick functionally graded TBC was sprayed by varying the feeding ratio of YSZ/NiCrAlY powders. Both coatings were deposited on IN 738LC alloy as a substrate. Microstructural characterization was performed by SEM and optical microscopy whereas phase analysis and chemical composition changes of the coatings and oxides formed during the tests were studied by XRD and EDX. The performance of the coatings fabricated with the optimum processing conditions was evaluated as a function of intense thermal cycling test at 1100 °C. During thermal shock test, FGM coating failed after 150 and duplex coating failed after 85 cycles. The adhesion strength of the coatings to the substrate was also measured. Finally, it is found that FGM coating has a larger lifetime than the duplex TBC, especially with regard to the adhesion strength of the coatings.  相似文献   

4.
Atmospheric plasma spraying of duplex and graded ZrO2 (8% Y2O3) thermal barrier coatings (TBCs) on Inconel 617 substrate with a NiCrAlY bond coat is described in terms of a deposition process of con-trolled coating structure. Special attention is devoted to the dominant spray parameters and the injector configuration for powder feeding, which play a fundamental role in graded coating deposition with con-trolled formation of a graded metal-ceramic (GMC) intermediate zone. The results of the graded coating spraying allow: (a) suppression of step-interface effects, (b) suppression of large differences (misfit) be-tween physical and mechanical constants of the coating and those of the substrate material, and (c) favor-able intergrowth of crystallites for a microstructurally integrated structure. Sprayed TBCs were investigated and compared with regard to their thermal cycling, oxidation behavior, and mechanical properties. The influence of crystal anisotropy changes on the resulting coating structure and properties is shown. On the basis of finite element (FE) calculations, the stress distribution within thermally cycled coating systems was analyzed. It is confirmed that the graded coating structure relaxes considerably the stresses resulting from the internal constraint due to thermal expansion difference between both metallic and ce-ramic materials. This stress distribution also decreases the gradient of elastic deformation and/or resid-ual stresses between the metal bond coat and top ceramic coating, and hence leads to a better thermal cycling behavior of the graded TBC systems. However, this advantage is not practical in every case, since the rapid oxidation of the metallic lamellae causes the ceramic phase in the GMC zone to undergo tensile stresses within a short thermal exposure time. The lifetime of duplex TBC systems that are under steady-state thermal load conditions is much higher than that of graded ones.  相似文献   

5.
Thermal barrier coatings (TBC) are an effective engineering solution for the improvement of in service performance of gas turbines and diesel engine components. The quality and further performance of TBC, likewise all thermally sprayed coatings or any other kind of coating, is strongly dependent on the adhesion between the coating and the substrate as well as the adhesion (or cohesion) between the metallic bond coat and the ceramic top coat layer. The debonding of the ceramic layer or of the bond coat layer will lead to the collapse of the overall thermal barrier system. Though several possible problems can occur in coating application as residual stresses, local or net defects (like pores and cracks), one could say that a satisfactory adhesion is the first and intrinsic need for a good coating. The coating adhesion is also dependent on the pair substrate-coating materials, substrate cleaning and blasting, coating application process, coating application parameters and environmental conditions. In this work, the general characteristics and adhesion properties of thermal barrier coatings (TBCs) having bond coats applied using High Velocity Oxygen Fuel (HVOF) thermal spraying and plasma sprayed ceramic top coats are studied. By using HVOF technique to apply the bond coats, high adherence and high corrosion resistance are expected. Furthermore, due to the characteristics of the spraying process, compressive stresses should be induced to the substrate. The compressive stresses are opposed to the tensile stresses that are typical of coatings applied by plasma spraying and eventually cause delamination of the coating in operational conditions. The evaluation of properties includes the studies of morphology, microstructure, microhardness and adhesive/cohesive resistance. From the obtained results it can be said that the main failure location is in the bond coat/ceramic interface corresponding to the lowest adhesion values.  相似文献   

6.
This article addresses the predominant degradation modes and life prediction of a plasma-sprayed thermal barrier coating (TBC). The studied TBC system consists of an air-plasma-sprayed bond coat and an air-plasma-sprayed, yttria partially stabilized zirconia top layer on a conventional Hastelloy X substrate. Thermal shock tests of as-sprayed TBC and pre-oxidized TBC specimens were conducted under different burner flame conditions at Volvo Aero Corporation (Trollhättan, Sweden). Finite element models were used to simulate the thermal shock tests. Transient temperature distributions and thermal mismatch stresses in different layers of the coatings during thermal cycling were calculated. The roughness of the interface between the ceramic top coat and the bond coat was modeled through an ideally sinusoidal wavy surface. Bond coat oxidation was simulated through adding an aluminum oxide layer between the ceramic top coat and the bond coat. The calculated stresses indicated that interfacial delamination cracks, initiated in the ceramic top coat at the peak of the asperity of the interface, together with surface cracking, are the main reasons for coating failure. A phenomenological life prediction model for the coating was proposed. This model is accurate within a factor of 3.  相似文献   

7.
Metal-ceramic coatings have been widely used for industrial applications, mainly in the gas turbine and diesel engine industries as thermal barrier coatings (TBCs). Conventional thermal barrier coatings consist of a metallic bond coat and an insulating ceramic topcoat. Temperatures and temperature gradients in the coating during plasma spraying play an important role on the final coating quality, especially the temperature of the particles just hitting the substrate surface. In this work, metal-ceramic coatings were applied on nickel-superalloy substrates. The temperatures of both the coating surface and substrate were measured during spraying. The adhesion of the coatings was determined using ASTM C 633 and correlated with the measured temperatures. Optical pyrometry and thermocouples were used to measure the interfacial and substrate temperatures, respectively. Temperature was shown to have a significant influence where lower interfacial temperatures were found to result in lower adhesion values.  相似文献   

8.
La2Ce2O7 (LCO)/yttria-stabilized zirconia (YSZ) thermal barrier coating (TBC) with segmentation crack structure was produced by atmospheric plasma spraying. Thermo-physical properties, such as thermal diffusivities and thermal conductivities, and thermal cycling performance of the segmented LCO/YSZ TBC were investigated. The thermal conductivity of the segmented coating was measured to be around 1.02 W/mK at 1200 °C, relatively lower than that of the non-segmented coating, respectively. The segmented LCO/YSZ TBC exhibited a thermal cycling lifetime of around 2100 cycles, improving the durability by nearly 50% as compared to the non-segmented TBC. The failure of the segmented coating occurred by chipping spallation and delamination cracking within the coating.  相似文献   

9.
选择La1.4Nd0.6Zr2O7(LNZ)为面层材料,质量比为1∶1的Mo与LNZ复合粉末(ML)为过渡层材料,用等离子喷涂法在高温Mo合金上制备双层结构热障涂层(ML/LNZ)。研究该涂层在1200℃的热震行为,用XRD分析失效后涂层的物相组成,并借助扫描电子显微镜和能谱对热震后涂层表面不同位置进行观察比较。结果表明,涂层在1200℃下的热循环寿命非常短,涂层沿粘结层与基体的界面剥落。而高温下Mo的氧化及挥发性氧化产物(MoO3)与涂层之间的化学反应是导致ML/LNZ涂层快速失效的主要原因。与氧化钼具有良好的热化学相容性是选择Mo基体上热障涂层的首要条件。  相似文献   

10.
High melting materials have always been very attractive candidates for materials development in thermal barrier coating (TBC) applications. Among these materials, complex perovskites with Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2T1/4)O3 compositions have been developed and deposited in TBC systems by atmospheric plasma spraying. Spray parameters were optimized and in-flight particle temperatures were recorded using Accuraspray-g3 and DPV 2000. Plasma sprayed coatings were found to undergo non-stoichiometric decomposition of components which could have contributed to early failure of the coatings. Particle temperature diagnostics suggest that gun power of ~15 kW or lower where majority of the particles have already solidified upon impact to the substrate could probably prevent the decomposition of phases. Additionally, it has been found that the morphology of the powder feedstock plays a critical role during atmospheric plasma spraying of complex perovskites.  相似文献   

11.
This work is focused on the effect of the residual stresses resulting from the coating process and thermal cycling on the failure mechanisms within the thermal barrier coating (TBC) system. To reach this objective, we studied the effect of the substrate preheating and cooling rate on the coating process conditions. A new thermomechanical finite element model (FEM) considering a nonhomogeneous temperature distribution has been developed. In the results, we observed a critical stress corresponding to a low substrate temperature and high cooling rate during spraying of the top-coat material. Moreover, the analysis of the stress distribution after service shows that more critical stresses are obtained in the case where residual stresses are taken into account.  相似文献   

12.
In an effort to improve the performance of heat engines at high temperatures, advanced surface coatings have been developed from complex perovskites. Materials of Ba(Mg1/3Ta2/3)O3 and La(Al1/4Mg1/2Ta1/4)O3 composition were synthesized and applied as ceramic topcoats of thermal barrier coating (TBC) systems by atmospheric plasma spraying (APS) in single layer and in double-layer combination with conventional yttria stabilized zirconia (YSZ). Microstructural and phase analyses reveal that plasma spraying of complex perovskites is accompanied with the formation of vertical crack networks and secondary oxide phases which influence the failure mechanism of the TBCs. The low value of fracture toughness for the complex perovskites and the thermally grown oxide at the topcoat-bondcoat interface of the TBCs are, however, the major factors which lead to the coating failure on thermal cycling at about 1250 °C.  相似文献   

13.
One of the main application fields of the thermal spraying process is thermal barrier coatings (TBCs). Today, partially stabilized zirconia (YSZ or MSZ) is mainly used as a TBC material. At temperatures above 1000 °C, zirconia layers age distinctively, including phenomena shrinkage and microcrack formation. Therefore, there is a considerable interest in TBCs for higher temperature applications. In this paper, lanthanum hexaaluminate, a newly developed TBC material with long-term stability up to 1400 °C, is presented. It ages significantly more slowly at these high temperatures than commercial zirconia-based TBCs. Its composition favors the formation of platelets, which prevent a densification of the coating by postsintering. It consists of La2O3, Al2O3, and MgO. Its crystal structure corresponds to a magnetoplumbite phase. Lanthanum hexaaluminate powders were produced using two different fabrication routes, one based on salts and the other one based on oxides. To optimize the granulate, various raw materials and additives were tested. The slurry was spray dried in a laboratory spray drier and calcined at 1650 °C. Using these two powders, coatings were produced by atmospheric plasma spraying (APS). The residual stresses of the coatings were measured by the hole drilling method, and the deposition process was optimized with respect to the residual stresses in the TBC. The coatings were extensively analyzed regarding phase composition, thermal expansion, and long-term stability, as well as microstructural properties.  相似文献   

14.
采用等离子喷涂技术制备了三种不同材料的热障涂层(TBC),对涂层进行了组织性能的分析比较.结果表明,Al-1075的TBC结合强度最高,为 24.66 MPa,具有良好的抗热震性能;KF-230的TBC结合强度最低,为 16.06 MPa;LG-210的TBC结合强度居中,抗热震性能最差.分析认为,氧化物层(TGO)在热障涂层中的失效起至关重要的作用,TGO是裂纹的产生源,是裂纹扩展的通道,是热障涂层系统中的最薄弱环节.因此抑制TGO是提高涂层结合强度、改善涂层抗热震性能的重要措施.  相似文献   

15.
During high-temperature exposure, the microstructure of thermal barrier coatings evolves, leading to increased thermal conductivity. We describe the evolution in the thermal properties of a 7 wt.% Y2O3 stabilized ZrO2 electron beam-physical vapor deposited (EB-PVD) thermal barrier coating with thermal cycling between room temperature and 1150 °C until failure. The thermal diffusivity and conductivity of the coating were evaluated non-destructively based on the analysis of its photothermal infrared emission. Although the coating density does not increase significantly with thermal cycling, the thermal diffusivity and conductivity of the coating increased substantially, particularly during the first 20 1 h cycles. The values then approach a limiting value. Complementary Raman spectroscopy suggests that the increase is accompanied by a reduction in the defect concentration in the coating and that there is also a correlation between the width of the Raman lines and the thermal conductivity.  相似文献   

16.
Thermal barrier coatings (TBCs) are successfully applied in turbines and could also protect combustion chambers in rocket engines. Apart from different loading conditions, the main difference between these applications is the substrate material, which is nickel-based for turbines and copper-based for rocket engines. To optimize the coating system, more knowledge of possible failure modes is necessary.In this work a standard coating system was applied by atmospheric plasma spraying to copper specimens. These specimens were exposed to thermal cycling with different cooling rates and to laser shock testing. A laser-cycling set-up was developed to qualify different coating systems. This set-up consists of a high-power diode laser (3 kW) which provides high heating rates to up to 1500 °C. Laser shock testing has proven to be a suitable alternative to burner rig testing.The results were different to the common failure modes for TBCs on nickel substrates as the coatings system does not fail at the interface between top coat and bond coat, but at the interface between substrate and bond coat. Two failure modes were observed: copper oxide was undermining the coatings at the substrate/bond coat-interface in the case of thermal cycling experiments, and complete delamination occurred at the same interface in the case of laser shock testing. Consequently, this interface is critical in the investigated material system.  相似文献   

17.
Tensile fracture behavior of thermal barrier coatings (TBCs) on superalloy was investigated in air at room temperature (RT), 650 °C and 850 °C. The bond coat NiCrAlY was fabricated by either high velocity oxygen fuel (HVOF) or air plasma spraying (APS), and the top coat 7%Y2O3-ZrO2 was deposited by APS. Thus two kinds of the TBC system were formed. It was shown that the coating had little effect on tensile stress-strain curves of the substrate and similar tensile strength was obtained in two kinds of the TBC system. However, the cracking behavior in the two kinds of TBC system at RT was different, which was also different from that at 650 °C and 850 °C by scanning electron microscopy. The interface fracture toughness of the two kinds of TBC system was evaluated by the Suo-Hutchinson model and the stress distribution in the coating and substrate was analyzed by the shear lag model.  相似文献   

18.
Suspension plasma spraying (SPS) has been shown as a promising process to produce porous columnar strain tolerant coatings for thermal barrier coatings (TBCs) in gas turbine engines. However, the highly porous structure is vulnerable to crack propagation, especially near the topcoat-bondcoat interface where high stresses are generated due to thermal cycling. A topcoat layer with high toughness near the topcoat-bondcoat interface could be beneficial to enhance thermal cyclic lifetime of SPS TBCs. In this work, a bilayer coating system consisting of first a dense layer near the topcoat-bondcoat interface followed by a porous columnar layer was fabricated by SPS using Yttria-stabilised zirconia suspension. The objective of this work was to investigate if the bilayer topcoat architecture could enhance the thermal cyclic lifetime of SPS TBCs through experiments and to understand the effect of the column gaps/vertical cracks and the dense layer on the generated stresses in the TBC during thermal cyclic loading through finite element modeling. The experimental results show that the bilayer TBC had significantly higher lifetime than the single-layer TBC. The modeling results show that the dense layer and vertical cracks are beneficial as they reduce the thermally induced stresses which thus increase the lifetime.  相似文献   

19.
Increased turbine inlet temperature in advanced turbines has promoted the development of thermal barrier coating (TBC) materials with high-temperature capability. In this paper, BaLa2Ti3O10 (BLT) was produced by solid-state reaction of BaCO3, TiO2 and La2O3 at 1500 °C for 48 h. BLT showed phase stability between room temperature and 1400 °C. BLT revealed a linearly increasing thermal expansion coefficient with increasing temperature up to 1200 °C and the coefficients of thermal expansion (CTEs) are in the range of 1 × 10− 5–12.5 × 10− 6 K− 1, which are comparable to those of 7YSZ. BLT coatings with stoichiometric composition were produced by atmospheric plasma spraying. The coating contained segmentation cracks and had a porosity of around 13%. The microhardness for the BLT coating is 3.9–4.5 GPa. The thermo-physical properties of the sprayed coating were investigated. The thermal conductivity at 1200 °C is about 0.7 W/mK, exhibiting a very promising potential in improving the thermal insulation property of TBC. Thermal cycling result showed that the BLT TBC had a lifetime of more than 1100 cycles of about 200 h at 1100 °C. The failure of the coating occurred by cracking at the thermally grown oxide (TGO) layer due to severe oxidation of bond coat. Based on the above merits, BLT could be considered as a promising material for TBC applications.  相似文献   

20.
Thermal barrier coatings (TBCs) with high strain tolerance are favorable for application in hot gas sections of aircraft turbines. To improve the strain tolerance of atmospheric plasma sprayed (APS) TBCs, 400 μm-500 μm thick coatings with very high segmentation crack densities produced with fused and crushed yttria stabilized zirconia (YSZ) were developed. Using a Triplex II plasma gun and an optimized spraying process, coatings with segmentation crack densities up to 8.9 cracks mm− 1, and porosity values lower than 6% were obtained. The density of branching cracks was quite low which is inevitable for a good inter-lamellar bonding.Thermal cycling tests yielded promising strain tolerance behavior for the manufactured coatings. Samples with high segmentation crack densities revealed promising lifetime in burner rig tests at rather high surface (1350 °C) and bondcoat temperatures (up to 1085 °C), while coatings with lower crack densities had a reduced performance. Microstructural investigations on cross-sections and fracture surfaces showed that the segmentation crack network was stable during thermal shock testing for different crack densities. The main failure mechanism was delamination and horizontal cracking within the TBC near the thermal grown oxide layer (TGOs) and the TBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号