首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 687 毫秒
1.
镁合金热喷涂Al_2O_3纳米陶瓷涂层性能研究   总被引:5,自引:0,他引:5  
采用氧乙炔火焰喷涂技术,在镁合金AZ31B表面制备Al2O3纳米陶瓷涂层。采用X射线衍射(XRD)、扫描电镜(SEM)分析复合陶瓷涂层的组成及组织形貌,并对其热震性能、致密性、耐磨性和耐蚀性进行测试。结果表明,热喷涂纳米陶瓷涂层中有AlTi3、Al2TiO5等新相生成,组织更为致密,颗粒熔化程度较高,涂层热震性能、致密性、耐磨性和耐蚀性明显优于热喷涂微米陶瓷涂层。热喷涂纳米陶瓷涂层热震次数可达40次,说明涂层结合强度较高,清漆封孔后,孔隙率为0,致密性和耐蚀性都达到最好。  相似文献   

2.
采用亚音速氧乙炔火焰喷涂制备涂层。通过在Al2O3/Cr2O3为基的陶瓷粉体中添加不同数量的纳米CeO2,探讨其对涂层组织及性能的影响。结果表明,纳米CeO2的加入使喷涂层的显微组织得到改善,喷涂层的耐磨性、结合强度、显微硬度得到提高。且随着纳米CeO2加入量的增加,涂层的性能呈先上升后下降的趋势。当纳米CeO2加入量为3%时,涂层中孔隙最少,涂层细化且致密,结合强度最高,显微硬度达到最高,耐磨性也最好。  相似文献   

3.
Mo(Si,Al)2高温抗氧化涂层的形貌与结构研究   总被引:3,自引:0,他引:3  
采用料浆烧结法在铌合金C-103基体表面制备Mo(Si0.6,Al0.4)2高温抗氧化涂层,利用SEM、EDS、XRD等仪器分析研究涂层的结构、元素分布、相分布与抗氧化性能的关系。结果表明:涂层与基体之间达到冶金结合,通过扩散形成中间结合层;在高温氧化环境下,Mo(Si0.6,Al0.4)2涂层表面生成致密氧化膜。氧化膜分为两层:外层主要为Al2O3,内层为Al2O3、SiO2、3Al2O3·2SiO2和HfO2相的混合物。  相似文献   

4.
等离子喷涂Al2O3陶瓷涂层的结构与组织特征   总被引:32,自引:4,他引:28  
用 X射线衍射、扫描电镜等研究了等离子喷涂 Al2 O3 陶瓷涂层的相结构、相组成及其组织特征。金属粘结层与陶瓷涂层均呈层状结构 ,陶瓷涂层致密性较差、易出现微裂纹 ,金属粘结层相对致密、一般无裂纹。陶瓷涂层以亚稳相γ- Al2 O3为主要相 ,同时存在α- Al2 O3。另外 ,涂层设计对涂层硬度有一定影响  相似文献   

5.
采用大气等离子喷涂技术制备常规和纳米Al2O3-13%TiO2涂层,并利用XRD、SEM、TEM对其显微结构进行观察分析。通过热震试验和火焰喷烧试验,研究两种涂层的热冲击性能。结果表明:相同试验条件下纳米Al2O3-13%TiO2涂层的热震失效循环次数明显高于常规涂层,且热震温度越高表现越明显;Al2O3-13%TiO2陶瓷涂层可以显著提高钢板的抗火焰烧蚀能力,且纳米涂层具有更长抗烧蚀时间。  相似文献   

6.
采用超音速等离子喷涂法在纯铜板上制备氧化铝(Al2O3)涂层试样。利用XRD衍射仪、扫描电镜和图形软件对其微观组织进行表征,采用水淬法测试其抗热震性能。结果表明:Al2O3涂层大部分由γ相组成,断口形貌为柱状晶和一定量的部分熔融颗粒组成,截面组织具有较好完整性,孔隙率为1.1%;试样在950℃经历了均值为36.3次热震循环后其半球顶端出现大面积剥落,但圆柱主体部分完好,因此Al2O3陶瓷涂层具备良好的抗热疲劳性能,超音速等离子喷涂适合于风口套表面涂层的制备。  相似文献   

7.
为提高陶瓷模具的使用寿命,以工业级Al2O3和ZrO2为主要原料,探讨ZrO2添加量对Al2O3/ZrO2复相陶瓷材料的力学性能、耐磨性能及显微结构的影响。结果表明:当ZrO2的质量分数为20%以内时,随着ZrO2含量的增加,Al2O3/ZrO2复相陶瓷的弯曲强度和断裂韧性逐渐提高,硬度逐渐降低;当ZrO2的质量分数为15%,由其制成的陶瓷模具耐磨性能最佳,并且ZrO2晶粒均匀地分散在Al2O3基体中,材料具有更加均匀致密的显微结构,这一结构决定了Al2O3/ZrO2复相陶瓷具有比纯Al2O3陶瓷更优异的力学性能,进而提高了陶瓷模具的耐磨性。  相似文献   

8.
针对某型火炮复拨器拨动子的磨损失效,研究了采用SHS反应火焰喷涂Al2O3基复相陶瓷涂层技术对表面进行修复的工艺方法,涂层组织结构、成分、界面结合状况以及磨损性能。研究表明,采用该方法修复后的表面涂层主要由Al2O3陶瓷相、Al2Cu3金属间化合物相以及Cu和Cu2O相组成,各相以长条片状相互嵌合平行于基材表面分布,呈典型的层片状喷涂形态;涂层与基体通过Ni-Al底衬相连,基体与底衬形成良好的冶金结合,而底衬与涂层之间既有机械结合,又有冶金结合,结合强度达19.8MPa;涂层耐磨性明显提高,其磨损失量为3.9×10-10g/(kgrmin)。··  相似文献   

9.
以Ti、Si、炭黑为原料,通过引入Al2O3,采用热压法制备了Ti3SiC2/Al2O3复合材料。通过X-射线衍射仪、扫描电子显微镜和能谱分析研究了Ti3SiC2/Al2O3复合材料的氧化行为。结果表明:添加Al2O3的试样抗氧化性优于纯Ti3SiC2试样,这是因为在1 300℃之前,形成α-Al2O3、TiO2和SiO2的混合层,且α-Al2O3集中到氧化层表面呈连续分布,形成致密氧化层。而在1 300℃之后试样表面则生成Al2TiO5抗氧化层。  相似文献   

10.
在Ni14.3Al5.7中掺杂原子数分数为1.86%的B,将原始粉末压制成坯。采用不同激光点火功率对压坯进行激光诱导自蔓延烧结,利用SEM、XRD及硬度、磨损、耐蚀性测试表征手段,分析研究烧结合金的微观组织结构及宏观性能。结果表明:未添加B,烧结合金物相为Ni3Al、NiAl、Al2O3,合金组织呈网状分布;掺杂B后,烧结产物为Ni3Al、NiAl、Al4B2O9、Al2O3,对产物组织形貌影响较小。当烧结功率为700 W,烧结合金的显微硬度达到381.27HV,维钝电流为0.253 mA/mm2;功率为1 100 W,相对密度达89.3%;功率为900 W,耐磨性最佳,相对质量损失为0.24%。在相同烧结功率下,B提升了烧结合金的相对密度、硬度,但耐磨性、耐蚀性能有所下降。  相似文献   

11.
宗玙  宋仁国  花天顺  蔡思伟 《兵工学报》2020,41(6):1210-1218
为解决7050高强铝合金在海洋环境中的腐蚀、磨损问题,设计了涂层结构以延长其使用寿命。采用微弧氧化(MAO)技术,以硅酸盐为主要电解液成分,通过加入不同浓度的石墨烯添加剂,在7050高强铝合金表面制备含石墨烯的陶瓷膜层。利用扫描电镜(SEM)、体视显微镜、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、涂层附着力自动划痕仪以及电化学工作站,研究含石墨烯的MAO陶瓷膜层形貌、粗糙度、相组成和元素分布、结合力以及耐蚀性。结果表明:石墨烯添加剂的加入使得陶瓷膜层表面微孔尺寸降低、结构致密,且主要是由α-Al2O3、γ-Al2O3组成;当石墨烯添加剂浓度为10 g/L时,MAO陶瓷膜层粗糙度最低,为857.835 nm,且结合力最好,达到46 N;膜 层的腐蚀电位最大,腐蚀电流最小,耐腐蚀性最好。  相似文献   

12.
采用两步电化学沉积技术在铜基体上制备Ni/Al2O3复合镀层。用电泳沉积工艺在铜基体上均匀沉积Al2O3涂层,用电镀技术在Al2O3涂层中嵌入金属镍,得到具有高Al2O3含量的Ni/Al2O3复合镀层。试验结果表明,两步沉积法能够提高复合镀层中的Al2O3微粒含量,镀层显微硬度及耐磨性能均有提高。  相似文献   

13.
对不同成分配比的Fe2O3粉和Al粉末生坯分别进行900,1 000,1 100℃烧结,利用自蔓延反应放热和加热炉加热的综合作用制备FeAl/Al2O3复合材料。用扫描电镜、维氏硬度计、M-200型磨损试验机对烧结合金的金相组织、硬度以及磨损性能进行测试。结果表明:Fe2O3-Al在适当配比和烧结温度下,可以合成以FeAl为基体、Al2O3和铝铁金属间化合物为增强相的复合材料;试样烧结前后相对密度受Al含量和烧结温度的影响,Al含量越高,烧结温度越高,相对密度越大;Al的质量分数为40.3%,1 100℃烧结后的样品具有最高硬度和最佳耐磨性能。  相似文献   

14.
铝合金微弧氧化陶瓷层的耐磨性能   总被引:11,自引:2,他引:9  
用微弧氧化方法 ,在 LY1 2基体上制备了陶瓷层 ,对陶瓷层的组织结构和摩擦学行为进行了研究。结果表明 ,陶瓷层分为疏松层和致密层 ,膜基结合良好 ,致密层主要由 Al- Si- O和 Al2 O3相组成 ,其硬度高达 HV1 70 0以上 ,耐磨性能与硬质合金相当  相似文献   

15.
三元硼化物陶瓷涂层由于其硬度高、耐磨性好、热膨胀系数与Fe相近,是良好的钢基耐磨涂层。坡缕石由于其化学组成和独特的晶体结构,是减摩材料的良好选择。将占骨料总质量分数1%、2%、3%的坡缕石添加到三元硼化物陶瓷涂层中,对比涂层之间耐磨性变化。结果表明:坡缕石的添加虽然对涂层结合强度无太大影响,但是提高了涂层的耐磨性和减摩性,且含2%坡缕石涂层耐磨性提高最多。  相似文献   

16.
铝合金微弧氧化技术研究概况   总被引:2,自引:0,他引:2  
综述了铝合金微弧氧化技术的原理及陶瓷膜的特点。着重分析总结电流密度、电压与频率、占空比等电参量因素对陶瓷膜性能的影响,介绍铝合金微弧氧化中常用的电解液组成,简要描述微弧氧化陶瓷膜的硬度、耐磨、断裂、耐腐蚀等性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号