首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80–550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.  相似文献   

2.
The influence of activation of the Y2O3 matrix of the Y2O3:Eu3+ phosphor by Bi3+ ions on the luminescence of Eu3+ and Bi3+ ions in it and on conditions of the excitation energy transfer to luminescence centers is studied. It is shown that the presence of Bi3+ ions leads to the appearance of recombination luminescence with participation of bismuth ions at low concentrations (up to 6–8 at %) of the dominant activator europium and to an increase in the threshold of intrinsic concentration quenching of its luminescence.  相似文献   

3.
Y(OH)3:Eu3+ nanotubes were synthesized using a facile hydrothermal method,and then,Pt particles were grown on the surface of the nanotubes using a combination of vacuum extraction and annealing.The resulting Pt/Y2O3∶Eu3+ composite nanotubes not only exhibited enhanced red luminescence under 255-or 468-nm excitation but could also be used to improve the efficiency of dyesensitized solar cells,resulting in an efficiency of 8.33%,which represents a significant enhancement of 11.96% compared with a solar cell without the composite nanotubes.Electrochemical impedance spectroscopy results indicated that the interfacial resistance of the TiO2-dye|I3-/I-electrolyte interface of the TiO2-Pt/Y2O3:Eu3+ composite cell was much smaller than that of a pure TiO2 cell.In addition,the TiO2-Pt/Y2O3:Eu3+ composite cell exhibited a shorter electron transport time and longer electron recombination time than the pure TiO2 cell.  相似文献   

4.
This article reports the luminescence properties of amphipathic YVO4:Er3+/Yb3+ nanoparticles (average grain size ca. 20 nm) obtained by an oleate-aided hydrothermal process. Depending on the upconversion (UPC) and downconversion (DWC) processes, they show luminescence in the visible and near-infrared (NIR) regions, respectively, by 980-nm excitation. The sample doped with Er3+:2.5 mol% and Yb3+:10 mol% showed the highest luminescence intensity in both the visible and NIR regions as a result of efficient energy transfer from Yb3+ to Er3+ ions. The hydrothermal treatment greatly enhanced both the DWC and UPC luminescence efficiencies. This is due to the reduction in the concentration of surface defects and ligands, accompanied by grain growth. NIR Fluorescence microscopy revealed for the first time that DWC luminescence is sufficiently intense for application of these nanocrystals as a NIR bioprobe.  相似文献   

5.
Different crystalline Ca3(VO4)2 nanocrystals have been synthesized successfully via a facile low temperature method with lithium addition. After different ration of Li+ doping into the Ca3(VO4)2: Eu3+ host, the crystallinity of the sample becomes different, resulting in different of luminescence intensity of the characteristic emission of Eu3+ ions. This approach provides economically viable route for large-scale synthesis of this kind of nanomaterials.  相似文献   

6.
The polycrystalline Eu2+ and RE3+ co-doped strontium aluminates SrAl2O4:Eu2+, RE3+ were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence of the SrAl2O4:Eu2+, RE3+ phosphors with different composition and doping ions were studied and compared. The results showed that the doped Eu2+ ion in SrAl2O4:Eu2+, Dy3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy3+ ion can hardly yield any luminescence under UV-excitation, but can form a electron trap with appropriate depth and greatly enhance the persistent luminescence and thermo-luminescence of SrAl2O4:Eu2+. Different co-doping RE3+ ions showed different effects on persistent luminescence. Only the RE3+ ion (e.g. Dy3+, Nd3+), which has a suitable optical electro-negativity, can form the appropriate electron trap and greatly improve the persistent luminescence of SrAl2O4:Eu2+. Based on above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated.  相似文献   

7.
A series of In3+-doped Ba0.85Ca0.15TiO3:0.75%Er3+/xIn3+ (BCT:Er/xIn) lead-free piezoelectric ceramics with excellent upconversion luminescence were synthesized by the solid state reaction method. The effects of In3+ content on the crystal structure, ferroelectric, dielectric, piezoelectric, and upconversion luminescence properties were systematically studied. Under 980 nm excitation, a giant enhancement of the green emission (550 nm) by 10 times is achieved upon 2.5% mol In3+ doping, which is rarely observed in rare-earth ions-doped perovskite ferroelectric materials. The ultraviolet-visible-near infrared absorption measurements show that the In3+ doping may improve the dissolution of Er3+ ions and modify the isolate-/clustered-Er3+ ratio for x?≤?2.5%, resulting in the enhancement of the absorption cross-section, thereby contributing to the enhancement of green luminescence. Unfortunately, the In3+ doping suppresses the ferroelectric and piezoelectric properties of the BCT:Er/xIn ceramics. This problem can be resolved by adding a small amount (1 mol%) of Yb3+ to the BCT:Er/xIn ceramics to restore their good ferroelectric and piezoelectric properties. Such In3+ and rare-earth ions co-doped ceramics with greatly enhanced upconversion luminescence and good ferroelectricity and piezoelectricity may have potential applications in electro-optical devices.  相似文献   

8.
This paper describes the synthesis of new upconverting luminescent nanoparticles that consist of YF3:Yb3+/Er3+ functionalized with poly(acrylic acid) (PAA). Unlike the upconverting nanocrystals previously reported in the literature that emit visible (blue-green-red) upconversion fluorescence, these as-prepared nanoparticles emit strong near-infrared (NIR, 831 nm) upconversion luminescence under 980 nm excitation. Scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction were used to characterize the size and composition of the luminescent nanocrystals. Their average diameter was about 50 nm. The presence of the PAA coating was confirmed by infrared spectroscopy. The particles are highly dispersible in aqueous solution due to the presence of carboxylate groups in the PAA coating. By carrying out the synthesis in the absence of PAA, YF3:Yb3+/Er3+ nanorice materials were obtained. These nanorice particles are larger (∼700 nm in length) than the PAA-functionalized nanoparticles and show strong typical visible red (668 nm), rather than NIR (831 nm), upconversion fluorescence. The new PAA-coated luminescent nanoparticles have the pottential be used in a variety of bioanalytical and medical assays involving luminescence detection and fluorescence imaging, especially in vivo fluorescence imaging, due to the deep penetration of NIR radiation.   相似文献   

9.
The Stokes and anti-Stokes luminescence of undoped and rare-earth-doped (Er3+ and Yb3+) BaSiO3 has been studied in the temperature range 78–450 K under excitation at 10–1000 mV. The results indicate that the emission mechanism in BaSiO3 crystals is hole recombination and that the anti-Stokes luminescence is due to consecutive sensitization; that is, the Yb3+ ions in the BaSiO3 compound act as luminescence sensitizers, and the Er3+ ions, as activators.  相似文献   

10.
A novel method of the synthesis of titanium silicide nanoparticles via solid-state route in an autoclave at 700°C is reported. The reaction of titanium silicide could be described briefly as: 5TiO2 + 3Si + 20Li = Ti5Si3 + 10Li2O. XRD pattern indicated that the product was hexagonal Ti5Si3. The Ti5Si3particle size (about 20–40 nm) is confirmed by the TEM images. Furthermore, the thermal stability and oxidation resistance of the titanium silicide nanoparticles were also investigated.  相似文献   

11.
Data are presented on the phase composition, particle size distribution, EPR, and luminescence of ultrafine chromium-doped alumina powders prepared by detonation synthesis. The largest particles in the powders are shown to consist mainly of a Cr2O3 solid solution in α-Al2O3. The luminescence spectrum of fine particles shows, in addition to lines characteristic of ruby, extra lines which are tentatively attributed to Cr3+ ions incorporated substitutionally into θ-Al2O3.__________Translated from Neorganicheskie Materialy, Vol. 41, No. 8, 2005, pp. 948–954.Original Russian Text Copyright © 2005 by Lyamkina, Chiganova, Slabko, Vorotynov, Taranova.  相似文献   

12.
The upconversion luminescence (UCL) of nanocrystalline gadolinium oxide (Gd2O3) doped with Er3+ and Yb3+ ions has been studied in the temperature range of 90–400 K. The nanocrystals were synthesized by chemical vapor deposition and possessed a cubic crystalline structure with an average particle size within 48–57 nm. It is established that the USL intensity in the red (4F9/24I15/2 transition in Er3+ ion) and green (4S3/24I15/2 transition) spectral regions depends on the sample temperature and concentration of dopant ions, as well as on the additional structural defects (anion vacancies) created in the crystal lattice by the introduction of Zn2+ ions or irradiation with high-energy (10 MeV) electrons. The luminescence efficiency and spectrum of the upconversion phosphor are determined by energy transfer processes.  相似文献   

13.
YVO4:Eu3+ nanoparticles were synthesized by hydrothermal method at different conditions. The microstructures and photoluminescence (PL) properties of the as-prepared YVO4:Eu3+ nanoparticles were investigated by X-ray powder diffraction, field emission scanning electron microscopy and PL spectroscopy. The detailed relationship between the microstructures and luminescence properties was investigated. It has been found that the crystallinity, the grain size and the duty factor of Eu3+ play important roles in influencing the luminescence properties. The article is published in the original.  相似文献   

14.
Epitaxial layers of NaAl3(BO3)4 (NAB) and YAl3(BO3)4〈Yb〉 (YAB〈Yb〉) containing up to 10 at % Yb have been grown by liquid-phase epitaxy on YAB substrates. Their growth kinetics have been studied at relative supersaturations of the high-temperature solution from 2 × 10?2 to 16 × 10?2. The ytterbium concentration in YAB〈Yb〉 has been shown to vary little during the epitaxial process. Near the edges of the substrate, the surface morphology of the layers is complicated by vicinals, which have a spiral form in the case of YAB〈Yb〉. On \(\{ 10\overline 1 1\} \) YAB substrates, homogeneous single-crystal NAB films have been grown.  相似文献   

15.
We have studied the optical absorption and luminescence spectra of 45Na2O · xNb2O5 · (55 − x)P2O5 glasses containing 5, 10, 20, 25, 30, and 35 mol % Nb2O5. The results indicate that the absorption band around 26000 cm−1, responsible for the yellow color of the glasses, is due to the [Nb(5+)--O] center and disappears upon secondary heat treatment. Heat treatment of europium-doped glasses increases the concentration of Eu3+ centers in an asymmetric environment, which is accompanied by an increase in luminescence efficiency. The reason for this is that the Eu3+ ions are located outside the niobate subsystem of the glass matrix. The europium in the glasses studied acts as a protector ion.  相似文献   

16.
The effect of the synthesis conditions on the properties of inorganic laser-active liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ is considered. The kinetic dependences of the U(IV) content and decay time of the Nd3+ luminescence in POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions for various synthesis procedures at 380 K have been obtained. In POCl3-SbCl5-235UO 2 2+ -Nd3+ solutions, nonradiative energy transfer Nd3+ → U4+ is observed, and quenching of the Nd3+ luminescence is described by the Stern-Volmer law: k q = (6.4 ± 0.6) × 105 l mol?1 s?1. Laser liquids POCl3-SbCl5-235UO 2 2+ -Nd3+ with neodymium concentration of up to 0.7 M, uranyl concentration of up to 0.1 M, and decay time of the Nd3+ luminescence of up to 220 μs have been prepared for the first time.  相似文献   

17.
This paper reports the comparison of photoluminescence and afterglow behavior of Dy3+ in CaSnO3 and Ca2SnO4 phosphors. The samples containing CaSnO3 and Ca2SnO4 were prepared via solid-state reaction. The properties have been characterized and analyzed by utilizing X-ray diffraction (XRD), photoluminescence spectroscope (PLS), X-ray photoelectron spectroscopy (XPS), afterglow spectroscopy (AS) and thermal luminescence spectroscope (TLS). The emission spectra revealed that CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed different photoluminescence. The Ca2SnO4:Dy3+ phosphor showed a typical 4F9/2 to 6Hj energy transition of Dy3+ ions, with three significant emissions centering around 482, 572 and 670 nm. However, the CaSnO3:Dy3+ phosphor revealed a broad T1 → S0 transitions of Sn2+ ions. The XPS demonstrate the existence of Sn2+ ions in CaSnO3 phosphor caused by the doping of Dy3+ ions. Both the CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors showed a typical triple-exponential afterglow when the UV source switched off. Thermal simulated luminescence study indicated that the persistent afterglow of CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors was generated by the suitable electron or hole traps which were resulted from the doping the calcium stannate host with rare-earth ions (Dy3+).  相似文献   

18.
Transmission and spontaneous photoluminescence excitation spectra of CsCdBr3:Tm (1 and 2.5 at % Tm) crystals have been studied under different optical pumping conditions. The results demonstrate that the anti-Stokes luminescence intensity in the thulium-doped crystals is higher at the higher doping level. We have determined the resonance wavelengths of IR photons for two-photon excitation of visible luminescence in CsCdBr3:Tm and identified the corresponding electronic transitions in thulium-related emission centers for Stokes and anti-Stokes luminescence.  相似文献   

19.
Europium-doped YVO4 phosphors have been synthesized using microwave radiation of 700 W power. The uniformity and high rate of microwave heating, as well as “nonthermal” effects of microwave radiation, considerably accelerate the decomposition of precursors and YVO4:Eu3+ synthesis. The europium concentration was varied from 1 to 8 at %. The luminescence intensity of YVO4:Eu3+ was shown to depend on Eu3+ concentration, with a maximum at 8 at % Eu3+. According to transmission electron microscopy data, the synthesized phosphors consist of nanoparticles 6 to 8 nm in size, with an appreciable degree of agglomeration.  相似文献   

20.
In this paper, the NaYF4:Yb, Tm upconversion (UC) nanoparticles (NPs) were synthesized using a solvothermal approach, and the core-shell structured NaYF4:Yb, Tm@SiO2 NPs, coated with a thin layer of SiO2 on the surface of the NaYF4:Yb, Tm NPs, were prepared by a typical St?ber method. X-ray diffraction (XRD), transmission electron microscopy (TEM), and luminescence spectroscopy were applied to characterize these samples. The obtained core-shell structured NaYF4:Yb, Tm@SiO2 NPs exhibited a perfect spherical morphology with narrow size distribution and smooth surfaces. Under 980 nm excitation, NaYF4:Yb, Tm and NaYF4:Yb, Tm@SiO2 samples showed intense ultraviolet UC luminescence, which originated from the 1D2 --> 3H6, 1I6 --> 3F4 transitions of Tm3+. These NPs have great potential for applications as fluorescent labels, imaging probes, optical storage, photodynamic therapy (PDT) in deep tissue, and solid-state lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号