首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
A new composite chitosan-coated biosorbent was prepared and was used for the removal and recovery of heavy metals from aqueous solution. In the present investigation, equilibrium adsorption characteristics of Cu (II), Ni (II), and Co (II) from their binary and tertiary solution on newly developed biosorbent chitosan-coated perlite beads were evaluated through batch and column studies. These beads were characterized by using FTIR, EDXRF and surface area analysis techniques. The effect of various biosorption parameters like effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on extent of adsorption was investigated. The adsorption follows Lagergren first order kinetic model. The equilibrium adsorption data were fitted to Freundlich and Langmuir adsorption isotherm models and the model parameters were evaluated. Both the models represent the experimental data satisfactorily. The sorbent loaded with metal was regenerated with 0.1N NaOH solution. Furthermore the column dynamic studies indicate the re-usage of the biosorbent.  相似文献   

2.
Reactive Green HE 4BD carrying polyamide hollow fibers were investigated as dye-affinity adsorbents for removal of chlorophenols (i.e., phenol, o-chlorophenol, p-chlorophenol and 2,4,6-trichlorophenol). Adsorption rates of chlorophenols were very high. Equilibrium was achieved in about 30 min. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium capacity and correlation coefficients. Results suggest that chemisorption process could be the rate-limiting step in the adsorption process. The maximum adsorption values of chlorophenols onto the Reactive Green HE 4BD carrying hollow fibers were 145.9 micromol/g for phenol, 179.2 micromol/g for 2,4,6-trichlorophenol, 194.5 micromol/g for p-chlorophenol and 202.8 micromol/g for o-chlorophenol. The affinity order was as follows: o-chlorophenol>p-chlorophenol>2,4,6-trichlorophenol>phenol. The adsorption capacity of chlorophenols decreased with increasing pH. Desorption of chlorophenols was achieved using methanol solution (30%, v/v). The Reactive Green HE 4BD-carrying hollow fibers are suitable for repeated use for more than 10 cycles without noticeable loss of adsorption capacity.  相似文献   

3.
Activated carbon prepared from rubber seed coat (RSCC), an agricultural waste by-product, has been used for the adsorption of phenol from aqueous solution. In this work, adsorption of phenol on rubber seed coat activated carbon has been studied by using batch and column studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage and contact time. The equilibrium adsorption capacity of rubber seed coat activated carbon for phenol removal was obtained by using linear Freundlich isotherm. The adsorption of phenol on rubber seed coat activated carbon follows first order reversible kinetics. The suitability of RSCC for treating phenol based resin manufacturing industry wastewater was also tested. A comparative study with a commercial activated carbon (CAC) showed that RSCC is 2.25 times more efficient compared to CAC based on column adsorption study for phenolic wastewater treatment.  相似文献   

4.
The removal of zinc ions from aqueous solutions on the biomass of Azadirachta indica bark has been studied by using batch adsorption technique. The biosorption studies were determined as a function of contact time, pH, initial metal ion concentration, average biosorbent size and biosorbent dosage. The equilibrium metal uptake was increased and percentage biosorption was decreased with an increase in the initial concentration and particle size of biosorbent. The maximum zinc biosorption occurred at pH 6 and percentage biosorption increases with increase in the biosorbent dosage. Experimental data obtained were tested with the adsorption models like Langmuir, Freundlich and Redlich-Peterson isotherms. Biosorption isothermal data were well interpreted by Langmuir model with maximum biosorption capacity of 33.49mg/g of zinc ions on A. indica bark biomass and kinetic data were properly fitted with the pseudo-second-order kinetic model.  相似文献   

5.
Removal of phenol and p-chlorophenol from synthetic single and bisolute aqueous solutions at 303.15 K through adsorption on Amberlite XAD-16 resin under batch equilibrium and dynamic column experimental conditions was investigated. The equilibrium adsorption data from single component solutions were fitted to Langmuir and Freundlich adsorption isotherm models to evaluate the model parameters and the parameters in turn were used to predict the extent of adsorption from bisolute aqueous solutions using Ideal Solution Adsorption (IAS) model. The effect of pH on removal of phenol and p-chlorophenol from single and bisolute systems was studied. The breakthrough capacity and total capacity of the resin for the adsorbates at different concentrations were evaluated through column adsorption studies. Attempts were made to regenerate the resin by solvent washing using methanol as an eluent. The limited number of adsorption-desorption cycles indicated that the adsorption capacity of the resin remained unchanged.  相似文献   

6.
Continuous metal ions biosorption from Pb/Cu and Pb/Cd solutions onto seaweed Gelidium sesquipedale and a composite material prepared from an industrial algal waste was performed in a packed bed column. A binary Langmuir equation describes well the equilibrium data and indicates a good adsorption capacity. In the sorption process, Cd and Cu break through the column faster than Pb due to its lower affinity for the biosorbent. An overshoot in the outlet Cd concentration was observed and explained by competitive adsorption between Pb and Cd, whereby the higher Pb affinity for the biosorbent displaces bound Cd ions. A small overshoot happens for Cu adsorption in the presence of Pb ions. Desorption using 0.1 M HNO3 as eluant, was 100% effective. A mass transfer model for the adsorption and desorption processes, considering an external and intraparticle film resistance, adequately simulates the column performance. A binary Langmuir equation was used to describe equilibrium for the saturation process and a mass action law for the desorption process. Elution process is defined as an ion exchange mechanism, between protons and metal ions.  相似文献   

7.
The removal of phenol from aqueous solution was examined by using a porous acrylic ester polymer (Amberlite XAD-7) as an adsorbent. Favorable phenol adsorption was observed at acidic solution pH and further increase of solution pH results in a marked decrease of adsorption capacity, and the coexisting inorganic salt NaCl exerts positive effect on the adsorption process. Adsorption isotherms of phenol were linearly correlated and found to be well represented by either the Langmuir or Freundlich isotherm model. Thermodynamic parameters such as changes in the enthalpy (DeltaH), entropy (DeltaS) and free energy (DeltaG) indicate that phenol adsorption onto XAD-7 is an exothermic and spontaneous process in nature, and lower ambient temperature results in more favorable adsorption. Kinetic experiments at different initial solute concentrations were investigated and the pseudo-second-order kinetic model was successfully represented the kinetic data. Additionally, the column adsorption result showed that a complete removal of phenol from aqueous phase can be achieved by XAD-7 beads and the exhausted adsorbent was amenable to an entire regeneration by using ethanol as the regenerant. More interestingly, relatively more volume of hot water in place of ethanol can also achieve a similar result for repeated use of the adsorbent.  相似文献   

8.
An efficient dye biosorbent was developed by entrapping a fungus mold, Trichoderma viride, within loofa sponge (LS) matirx. Immobilization enhanced the sorption of dye by 30% at equilibrium as compared with T. viride free biomass (TVFB). The maximum dye biosorption capacity of T. viride immobilized onto loofa sponge (TVILS) and TVFB was found to be 201.52 and 155.06 mg g−1 biomass, respectively. The kinetics of dye removal by TVILS was rapid, with 84.3% sorption within the first 30 min and equilibrium after 90 min, whereas sorption by TVFB was slower as 61.4% dye was removed in first 30 min and equilibrium was achieved in 120 min. Biosorption kinetics and equilibria followed the pseudo-second-order and Langmuir adsorption models. FTIR spectroscopy of T. viride biomass showed that amine, hydroxyl, carbonyl and amide bonds were involved in the sorption of dye. Dye desorption from dye-laden TVILS with 0.1 M HCl was 99%. Regenerated TVILS was reusable without any appreciable decrease in its biosorption capacity during five repeated cycles. The dye removing capacity of TVILS in a continuous-flow column bioreactor was better than in batch-scale procedures. The study shows that TVILS has the potential of application as an efficient biosorbent for the removal of methylene blue from aqueous solutions.  相似文献   

9.
This study describes biosorption of chromium (VI) by immobilized Spirulina platensis, in calcium alginate beads. Three aspects viz. optimization of bead parameters, equilibrium conditions and packed column operation were studied and subsequently modeled. Under optimized bead diameter (2.6 mm), calcium alginate concentration (2%, w/v) and biomass loading (2.6%, w/v) maximum biosorption was achieved. 140 g l−1 loading of optimized beads resulted in 99% adsorption of chromium (VI) ions from an aqueous solution containing 100 mg l−1 of chromium (VI). The quantitative chromium (VI) uptake was effectively described by Freundlich adsorption isotherm. The immobilized S. platensis beads were further used in a packed bed column wherein the effects of bed height, feed flow rate, inlet chromium (VI) ion concentration were studied by assessing breakthrough time. The performance data were tested for various models fitting in order to predict scale up-design parameters such as breakthrough time and column height. Results were encouraging.  相似文献   

10.
The adsorption of alginate gel (AG) beads and AG with activated carbon entrapped (AG–AC) beads prepared using different types of metal ions were investigated by measuring the removal of several organic compounds with different charges and size. AG–AC beads prepared in a CaCl2 solution adsorbed strongly positively charged compounds as well as electrically neutral and low molecular weight compounds such as p-chlorophenol. However, a high molecular weight humic acid was not adsorbed by AG–AC. The AG–AC selectively adsorbed p-chlorophenol from a humic acid solution. The adsorption capacity obtained from the adsorption isotherm of AC entrapped in AG was compared with that of AC. The AG–AC beads prepared in a solution of FeCl3 were able to specifically adsorb negatively charged gallic acid. Thus, entrapping AC into AG resulted in the selective adsorption.  相似文献   

11.
锶为具有很强毒性的裂变产物.结合生物吸附和固定化技术的优点,用海藻酸钠-氯化钙包埋法制作固定酵母菌颗粒并填充成吸附柱,研究了固定化酵母菌颗拉的特性和在静态、动态吸附下的吸附率、吸附容量和柱层析参数.结果表明,酵母菌固定化颗粒具有较高的比表面积和较好的机械承受能力.静态吸附结果表明,填充柱具有较高的吸附容量,吸附平衡时平...  相似文献   

12.
Waste Ponkan mandarin (Citrus reticulata) peel was used as biosorbent to extract Ni(II), Co(II) and Cu(II) from aqueous solutions at room temperature. To achieve the best adsorption conditions the influence of pH and contact time were investigated. The isotherms of adsorption were fitted to the Langmuir equation. Based on the capacity of adsorption of the natural biosorbent to interact with the metallic ions, the following results were obtained 1.92, 1.37 and 1.31 mmol g(-1) for Ni(II), Co(II) and Cu(II), respectively, reflecting a maximum adsorption order of Ni(II)>Co(II)>Cu(II). The quick adsorption process reached the equilibrium before 5, 10 and 15 min for Ni(II), Co(II) and Cu(II), respectively, with maximum adsorptions at pH 4.8. In order to evaluate the Ponkan mandarin peel a biosorbent in dynamic system, a glass column was fulfilled with 1.00 g of this natural adsorbent, and it was fed with 5.00 x 10(-4)mol l(-1) of Ni(II) or Co(II) or Cu(II) at pH 4.8 and 3.5 ml min(-1). The lower breakpoints (BP(1)) were attained at concentrations of effluent of the column attained the maximum limit allowed of these elements in waters (>0.1 mg l(-1)) which were: 110, 100 and 130 bed volumes (V(effluent)/V(adsorbent)), for Ni(II), Co(II) and Cu(II), respectively. The higher breakpoints (BP(2)) were attained when the complete saturation of the natural adsorbent occurred, and the values obtained were: 740, 540 and 520 bed volumes for Ni(II), Co(II) and Cu(II), respectively.  相似文献   

13.
In this study, the hydroxyapatite (HAp) nanopowders prepared by chemical precipitation method were used as the adsorbent, and the potential of HAp nanopowders for phenol adsorption from aqueous solution was studied. The effect of contact time, initial phenol concentration, pH, adsorbent dosage, solution temperature and adsorbent calcining temperature on the phenol adsorption, and the adsorption kinetic, equilibrium and thermodynamic parameters were investigated. The results showed that the HAp nanopowders possessed good adsorption ability to phenol. The adsorption process was fast, and it reached equilibrium in 2h of contact. The initial phenol concentration, pH and the adsorbent calcining temperature played obvious effects on the phenol adsorption capacity onto HAp nanopowders. Increase in the initial phenol concentration could effectively increase the phenol adsorption capacity. At the same time, increase in the pH to high-acidity or to high-alkalinity also resulted in the increase in the phenol adsorption capacity. Increase in the HAp dosage could effectively increase the phenol adsorption percent. However, the higher calcining temperature of HAp nanopowders could obviously decrease the adsorption capacity. The maximum phenol adsorption capacity was obtained as 10.33mg/g for 400mg/L initial phenol concentrations at pH 6.4 and 60 degrees C. The adsorption kinetic and the isotherm studies showed that the pseudo-second-order model and the Freundlich isotherm were the best choices to describe the adsorption behaviors. The thermodynamic parameters suggested that the adsorption of phenol onto HAp was physisorption, spontaneous and endothermic in nature.  相似文献   

14.
To enhance the metal removing capacity of a fungus biosorbent, a new idea of producing a hybrid biosorbent (HB) matrix by combining two different biosorbents using a simple and low-cost immobilization technique was tested for the sorption of Cd(II). The two biosorbents, used as the building block for the production of HB matrix, were the fungal biomass of Phanerochaete chrysosporium (B1) and fibrous network of papaya wood (B2). Maximum independent biosorption capacity of B1 and B2 was noted, respectively, to be 71.36 and 17.62 mgCd(II)g(-1) biosorbent. However, when two biosorbents were hybridized to form HB matrix, the combined biosorption capacity (141.63 mgCd(II)g(-1) biosorbent) was increased by 98.47, 703.80%, respectively, as compared to the ability of B1 and B2 when used alone, and by 59.17% than the sum of separate individual abilities of biosorbents B1 and B2. The kinetics of equilibrium was fast, approximately 88% of Cd(II) biosorption taking place within 30 min. Biosorption kinetics and equilibria followed the pseudo-second order kinetics and Langmuir adsorption isotherms model. HB matrix was also shown to be highly effective in removing Cd(II) from aqueous solution in a continuous flow fixed-bed column bioreactor, both in batch and repeated cycles.  相似文献   

15.
A new biosorbent produced from castor leaves powder [Ricinus communis L.] was used to remove mercury(II) from aqueous solutions. The initial mercury concentrations, contact time and initial pH were evaluated. The ability of castor leaves to remove mercury at various pH (2-8) was studied. The maximum capacity (Qmax) of biomass was found to be 37.2mg Hg(II)/g at pH 5.5. Biosorption equilibrium was established in approximately 1h. The equilibrium data were described well by Langmuir and Freundlich models. The adsorbed mercury on biomass was desorbed using 10 ml of 4M HCl solution. The biomass could be reused for other biosorption assays. The ability of biomass to adsorb mercury(II) in a column was investigated. These studies consider the possibility of using leaves of castor tree as an inexpensive adsorbent for the removal of Hg(II) from contaminated chemical and mining industry wastewaters. It is also suggested that the dried biomass might be simply kept and used in a very low cost metal ion removal system.  相似文献   

16.
Chryseomonas luteola TEM 05 cells were entrapped both in alginate and chitosan coated alginate beads. Biosorption of metal ions on alginate beads was investigated by using a batch stirred system at pH 6.0, 25 degrees C, in initial metal concentration of 1.92 mM of Cr6+, 0.89 mM Cd2+ and 1.69 mM Co2+. Then, a process of competitive biosorption of these metal ions was described and compared to single metal ion adsorption in solution. The apparent equilibrium biosorption was reached within the 180 min of contact for all metals. Although the competitive biosorption capacities of the beads for all metal ions were lower than those of single conditions, Cd2+ biosorption on alginate and alginate-chitosan beads did not change significantly.  相似文献   

17.
Environmental regulations for removal of trinitrotoluene (TNT) from wastewater have steadily become more stringent. This study focuses on the adsorption equilibrium, kinetics, and column dynamics of TNT on heterogeneous activated carbon. Adsorption equilibrium data obtained in terms of temperature (298.15, 313.15 and 323.15K) and pH (3, 8 and 10) were correlated by the Langmuir equation. In addition, the adsorption energy distribution functions which describe heterogeneous characteristics of porous solid sorbents were calculated by using the generalized nonlinear regularization method. Adsorption breakthrough curves were studied in activated column under various operating conditions such as temperature, pH, concentration, flow rate, and column length. We found that the effect of pH on adsorption breakthrough curves was considerably higher than other operating conditions. An adsorption model was formulated by employing the surface diffusion model inside the activated carbon particles. The model equation that was solved numerically by an orthogonal collocation method successfully simulated the adsorption breakthrough curves.  相似文献   

18.
The study reports removal of heavy metals when present singly or in binary and ternary systems by the milling agrowaste of Cicer arientinum (chickpea var. black gram) as the biosorbent. The biosorbent removed heavy metal ions efficiently from aqueous solutions with the selectivity order of Pb>Cd>Zn>Cu>Ni. The biosorption of metal ions by black gram husk (BGH) increased as the initial metal concentration increased. Biosorption equilibrium was established within 30 min, which was well described by the Langmuir and Freundlich adsorption isotherms. The maximum amount of heavy metals (qmax) adsorbed at equilibrium was 49.97, 39.99, 33.81, 25.73 and 19.56 mg/g BGH biomass for Pb, Cd, Zn, Cu and Ni, respectively. The biosorption capacities were found to be pH dependent and the maximum adsorption occurred at the solution pH 5. Efficiency of the biosorbent to remove Pb from binary and ternary solutions with Cd, Cu, Ni and Zn was the same level as it was when present singly. The presence of Pb in the binary and ternary solutions also did not significantly affect the sorption of other metals. Breakthrough curves for continuous removal of Pb from single, binary and ternary metal solutions are reported for inlet-effluent equilibrium. Complete desorption of Pb and other metals in single and multimetal solutions was achieved with 0.1 M HCl in both shake flask and fixed bed column studies. This is the first report of removal of the highly toxic Pb, Cd, and other heavy metals in binary and ternary systems based on the biosorption by an agrowaste. The potential of application for the treatment of solutions containing these heavy metals in multimetal solutions is indicated.  相似文献   

19.
The adsorption of phenol from aqueous solutions using a column packed with pre-treated Pinus pinaster bark was studied. The influence of the inlet phenol concentration (0.01 or 0.1 g/L) and the flow rate (6, 15.6 or 30 mL/min) on the breakthrough curves was analysed. An increase in the flow rate, decreased the time necessary to reach the breakthrough point and, for the highest inlet concentration, the dynamic capacity of the bed, from 7.5 to 0.4 min and from 0.38 to 0.15 mg phenol/go.d. bark, respectively, at 0.1 g/L. The LUB Design Approach was used to determine the equivalent length of unused bed. The lower LUB values, which imply a better utilization of the bark bed, were obtained at the higher flow rate. A model which considered the effect of axial dispersion was successfully used to describe the fixed-bed operation behaviour for the lower flow rates. For the lowest inlet phenol concentration, the axial dispersion coefficient increased significantly when the flow rate increased.  相似文献   

20.
Removal of chromium (III) from aqueous solutions by leonardite (a low-cost adsorbent) was studied in a series of batch experiments. Stabilization of the adsorbent material with alginate beads was also investigated. The extent of adsorption was evaluated as a function of the solution pH, contact time, and the adsorbate concentration. Cr(III) removal was pH dependent, reaching a maximum at a pH range of 4–5. Kinetic studies allowed gives relevant information regarding mass transfer processes involved during the sorption process. Equilibrium data fitted well to both the Langmuir and Freundlich isotherm models and the maximum adsorption capacity turned out to be 75.2 mg Cr(III) g?1. Encapsulation of leonardite in alginate beads resulted in a slightly lower adsorption capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号