首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Based on our kinetics models for gas source molecular beam epitaxy of mixed group-V ternary materials, the group-V composition control in InyGa1−yAs1−xPx epilayers has been studied. The P or As composition in InyGa1−yAs1−xPx (lattice matched to InP or GaAs) can be obtained from a simple equation for substrate temperatures below 500°C. This has been verified by a series of experimental results.  相似文献   

2.
Two types of quantum well (QW) structures grown lattice matched on (100) GaAs have been studied. The first type of structure consists of pseudomorphic GaAsxSb1-x/GaAs (x≤0.3) SQWs which show emission wavelengths longer than those reported for pseudomorphic InyGa1−yAs/GaAs QWs. However, the attractive emission wavelength of 1.3 μm has not been achieved. To reach this goal, a novel type of bilayer QW (BQW) has been grown consisting of a stack of two adjacent pseudomorphic layers of GaAsxSb1−x and In Ga1-y As embedded between GaAs confinement layers. In this BQW, a type-II heterojunction is formed between GaAsxSb1−x and InyGa1−yAs, resulting in a spatially indirect radiative recombination of electrons and holes at emission wavelengths longer than those achieved in the GaAsxSb1−x/GaAs and IiyGa1−yAs/GaAs SQWs. The longest 300K emission wavelength observed so far was 1.332 μm.  相似文献   

3.
Published data for the composition dependence of the room-temperature bandgap (Eg) and lattice constant (ao) in the pseudobinary GayIn1-yAs, GayIn1-yP, GaAsxPl-x, and InAsxPl-x systems have been used to derive the following equations for the quaternary GayInl-yAsx Pl-x, alloys: $$\begin{gathered} a_o ({\AA}) = 5.87 + 0.18x - 0.42y + 0.02xy \hfill \\ E_g (eV) = 1.35 - x + 1.4y - 0.33xy - (0.758 - 0.28x)y(1 - y) \hfill \\ - (0.101 + 0.109y) x(1 - x). \hfill \\ \end{gathered} $$ Available experimental data are in excellent agreement with these equations.  相似文献   

4.
The organometallic vapor phase epitaxial (OM-VPE) growth of AlxGa1-xPyAs1-y on graded GaPyAs1-yGaAs in the compositional range 0 < x < 0.9 and 0 < y < 0.6 is reported. It is found that composition control can be easily achieved, and that the vapor phase ratio of trimethylaluminum to trimethylgallium strongly influences the incorporation of P in the solid. A model is developed which explains this in terms of competing reaction rates. The model gives a good fit to the experimental data.  相似文献   

5.
The Gal-xInxSb alloy system is a potentially important material for the fabrication of middle wavelength infrared detectors and emitters. In order to develop the use of this material we have investigated the liquid phase epitaxial growth of Ga1−xInxSb on GaSb via stepwise grading in the range of 400–600°C using a horizontal slider boat in a transparent furnace. Single crystal layers of Ga1−xInxSb have been obtained for the composition range 0<x<.30. As-grown undoped layers are p-type and have been characterized by lattice constant, surface morphology, bandgap, carrier concentration and carrier lifetime.  相似文献   

6.
High quality InAsxSbyPl-x-y quaternary layers, which are lattice matched to InAs, have been grown successfully on InAs substrates by liquid phase epitaxy. Both Graded and constant composition InAsxSbyPl-x-y layers have been grown. In addition, the graded InAsxSbyPl-x-y layer has been used as a buffer layer for the growth of InAsl-xSbx on an InAs substrate. Research supported in part by Commander, U. S. Army Missile Command, Attn: AMSMI-RNS, Redstone Arsenal, AL 35809 and ARPA-Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, VA 22209.  相似文献   

7.
The alloy compositions of GaXIn1−XAsyP1−y LPE layers lattice-matched to InP substrates have been determined by electron microprobe analysis. The composition data are well repre-sented by x = 0.40y + 0.067y2. The emission wavelengths of lattice-matched GaXIn1−XAsyP1−y/InP double-heterostructure diode lasers have been measured at 300 and 80 K. The photon energies for laser emission at 300 K are given by hΝ(eV) = 1.307 − 0. 60y + 0.03y2. The emission energies at 80 K are 57 meV higher. This work was sponsored by the Department of the Air Force.  相似文献   

8.
The low pressure metalorganic chemical vapor deposition epitaxial growth and characterization of InP, Ga0.47In0.53 As and GaxIn1-xAsyP1-y, lattice-matched to InP substrate are described. The layers were found to have the same etch pit density (EPD) as the substrate. The best mobility obtained for InP was 5300 cm2 V−1S−1 at 300 K and 58 900 cm2 V−1 S−1 at 772K, and for GaInAs was 11900 cm2 V−1 S−1 at 300 K, 54 600 cm2 V−1 S−1 at 77 K and 90 000 cm V−1S−1 at 2°K. We report the first successful growth of a GaInAs-InP superlattice and the enhanced mobility of a two dimensional electron gas at a GaInAs -InP heterojunction grown by LP-MO CVD. LP MO CVD material has been used for GaInAsPInP, DH lasers emitting at 1.3 um and 1.5 um. These devices exhibit a low threshold current, a slightly higher than liquid phase epitaxy devices and a high differential quantum efficiency of 60%. Fundamental transverse mode oscillation has been achieved up to a power outpout of 10 mW. Threshold currents as low as 200 mA dc have been measured for devices with a stripe width of 9 um and a cavity length of 300 um for emission at 1.5 um. Values of T in the range 64–80 C have been obtained. Preliminary life testing has been carried out at room temperature on a few laser diodes (λ = 1.5μm). Operation at constant current for severalthousand hours has been achieved with no change in the threshold current.  相似文献   

9.
A nickel silicide process for Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloy materials compatible with Si technology has been developed. Low-resistivity-phase (12–20 μΘ cm) nickel silicides have been obtained for these alloys with different low sheet-resistance temperature windows. The study shows that thin (15–18 nm) silicide layers with high crystalline quality, smooth silicide surface, and smooth interface between silicide and the underlying material are achievable. The technique could be used to combine the benefits of Ni silicide and Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloys. The technique is promising for Si or Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloy-based metal-oxide semiconductor, field-effect transistors (MOSFETs) or other device applications.  相似文献   

10.
Data are presented demonstrating that the surface encapsulant and the As4 overpressure strongly affect Si diffusion in GaAs and AlxGa1-xAs, and thus are important parameters in impurity-induced layer disordering. Increasing As4 overpressure results in anincrease in diffusion depth in the case of GaAs, and adecrease in diffusion depth for AlxGa1-xAs. In addition, the band-edge exciton is observed in absorption on an AlxGa1-xAs-GaAs superlattice that is diffused with Si and is converted to bulk crystal AlyGa1-yAs via impurity-induced layer disordering. In contrast, the exciton is not observed in absorption on GaAs diffused with Si in spite of the high degree of compensation. These data indicate that the Si diffusion process, and the properties of the diffused material, are different for GaAs and for AlxGa1-xAs-GaAs superlattices converted into uniform AlyGa1-yAs (0 ≤yx ≤ 1) via impurity-induced layer disordering with the amphoteric dopant Si.  相似文献   

11.
Photoluminescence spectra and efficiency have been measured for several strained InAsyP1−yInxGa1−xAs (0.28 < y ≤ 0.62; 0.66 ≤ x ≤ 0.83) double heterostructures grown by vapor phase epitaxy on InP substrates with graded InAsP buffer layers. Luminescence peak positions between the wavelengths of 1.99 and 2.57 (μm at a temperature of 295K are consistent with bandgap luminescence from the InxGa1−xAs active regions. Despite a high density of dislocations in the buffer layers, internal radiative recombination efficiencies of from 25 to 50% for the structures are found at 295K.  相似文献   

12.
In1?xGaxP vapor-grown electroluminescent junctions have been deposited directly onto GaAs substrates. For these layers, an alloy composition within a few mole percent of the lattice-matching composition of 51.5 mole percent GaP has been found to be essential for high luminous efficiencies and for the avoidance of microcracks throughout the epitaxial layer. For In1?xGaxP alloys near this composition, the electroluminescence characteristics of the diodes have been found to be excellent, with room-temperature external quantum efficiencies as high as 0.2% attained for red emission near 6600 Å. The properties of In.5Ga.5P junction structures deposited directly onto GaAs ar? compared with those of In1?xGaxP layers previously prepared on GaP substrates.  相似文献   

13.
Based on intrinsic alloy phase formation chemistry and thermodynamics, a novel and unique way of producing compositionally homogeneous multi-component (binary, ternary, quaternary) semiconductor materials is presented. A free energy minimization computer program licensed from AEA Technology Engineering Software, Inc., has been employed to study the composition of the solidifying phases from Ga-In-As-Sb melts at different temperatures and with various liquid compositions. The solid phases have been identified (theoretically and experimentally) to be either ternary compounds of Ga1−xInxAsySb1−y depending on the melt temperature and composition. By engineering the thermochemistry of preferential phase formation in the Ga-In-As-Sb melt, compositionally uniform, single phase, crack free, large polycrystalline Ga1−xInxSb and Ga1−xInxAs have been grown.  相似文献   

14.
MOCVD growth of InxGa1?xAs from trimethylgallium (TMG), triethylgallium (TEG), trimethylindium (TMI) and arsine was studied over a wide range of growth conditions. It was found that the InxGa1?xAs strain with respect to InP is strongly influenced by the arsine concentration when grown with TEG and TMI. In contrast the InxGa1?xAs strain was independent of arsine concentration when grown with TMG and TMI. It was also observed that the growth rate of InxGa1?xAs is higher for TMG than for TEG with the same TMI and arsine flow. In addition an interaction between TEG and dimethylzinc (DMZ) was also observed. We show that MOCVD growth process involves many complex reactions and cannot be considered as a simple decomposition of each precursor. The interactions between precursors, which takes place in the gas phase or on the growing surface, has to be considered. We have utilized the TEG/arsine interaction for the growth of strain compensated superlattices by modulating the arsine flow into the reactor chamber while keeping the TEG and TMI constant. Structures with up to 100 periods of 100 Å of +1% In0.6Ga0.4As and 200 Å of ?0.5% In0.5Ga0.5As were grown with excellent characteristics.  相似文献   

15.
Epitaxial transparent-substrate light-emitting diodes (ETS-LEDs) have been fabricated on optimized graded buffers of InxGa1−xP on GaP (∇x[InxGa1−x]P/GaP) that feature controlled threading dislocation densities of 3×106 cm−2. The ETSLEDs show increasing efficiency from 575 nm to 655 nm, in marked contrast to previous reports where performance drops above 600 nm, and feature the lowest spectral widths ever reported in ∇x[InxGa1−x]P/GaP. The improvement over earlier reports is attributed to large mean dislocation spacings in optimized ∇x[InxGa1−x]P/GaP, which are an order of magnitude greater than the mean carrier diffusion length. A slight performance decline remains at 655 nm, but the overall performance of this first generation of ETS-LEDs is promising.  相似文献   

16.
The formation mechanisms of InAs/Ni/W ohmic contacts to n-type GaAs prepared by radio-frequency (rf) sputtering were studied by measuring contact resistances (Rc) using a transmission line method and by analyzing the interfacial structure mainly by x-ray diffraction and transmission electron microscopy. Current-voltage characteristics of the InAs/Ni/W contacts after annealing at temperatures above 600°C showed “ohmic-like behavior.” In order to obtain the “ohmic” behavior in the contacts, pre-heating at 300°C prior to high temperature annealing was found to be essential. The contacts showed ohmic behavior after annealing at temperatures in the range of 500∼850°C and contact resistance values of as low as ∼0.3Ω-mm were obtained. By analyzing the interfacial structures of these contacts, InxGa1−xAs layers with low density of misfit dislocations at the InxGa1−xAs and GaAs interface were observed to grow epitaxially on the GaAs substrate upon heating at high temperatures. This intermediate InxGa1−xAs layer is believed to divide the high energy barrier at the contact metal and GaAs interface into two low barriers, resulting in reduction of the contact resistance. In addition, Ni was found to play a key role to relax a strain in the InxGa1−xAs layer (introduced due to lattice mismatch between the InxGa1−xAs and GaAs) by forming an intermediate NixGaAs layer on the GaAs surface prior to formation of the InxGa1−xxAs layer.  相似文献   

17.
The criteria for clustering and spinodal decomposition in III/V pseudobinary and quaternary solid alloys are examined. A chemical driving force for clustering and phase separation exists in some ternary and most quaternary alloys. However, single crystalline alloys are shown to be stabilized by the coherency strain energy inherent in any clustering or spinodal decomposition in alloys where lattice parameter is a function of composition. Analytical expressions are derived for Ts, the temperature above which no clustering or phase separation should occur. Most III/V pseudobinary and quaternary alloys are stable at all temperatures. Numerical techniques are used to calculate spinodal isotherms. Results are presented for the systems GaxIn1−x As P1−y, A1xGa1−xAsySb1−y, and GaxIn1−x As P1−y. This work was supported by the Department of Energy, contract No. DE-AT 03-81 ER 10934.  相似文献   

18.
Photoluminescence of Ga1?x In x As y Sb1?y (0.08<x<0.22) epilayers lattice-matched to InAs substrate was investigated for the first time at 80 K, and the band gap of solid solutions was evaluated experimentally. It was demonstrated that the intensity of the band-to-band radiative recombination for p-GaInAsSb undoped layers depends on the composition of the quaternary solid solution and is governed by the concentration of intrinsic structural defects. For an n-GaInAsSb:Te donor-doped layer, the band-to-band recombination band and an additional emission band were observed. The latter band is related to the radiative recombination via the deep acceptor level formed by an intrinsic complex V GaTe with the activation energy E DA =122 meV.  相似文献   

19.
InxGa1−xAs-based ohmic contacts which showed excellent contact properties for n-GaAs were demonstrated to be applicable to p-GaAs ohmic contacts. These contacts, prepared by radio-frequency sputtering, provided low contact resistance (0.2 Ω-mm), excellent thermal stability, smooth surface, and good reproducibility. The contact resistances had a weak dependence on the annealing temperatures, which was desirable in a manufacturing view point. This weak temperature dependence was explained to be due to a unique Schottky barrier height at the metal/p-InxGa1−xAs interface which does not depend on the In concentration in the InxGa1−xAs layer. The present experiment showed the possibility of simultaneous preparation of ohmic contacts for both n and p-GaAs using the same contact materials.  相似文献   

20.
Data are presented demonstrating the formation of native oxides from high Al composition In0.5(AlxGa1-x)0.5P (x≳ 0.9) by simple annealing in a “wet” ambient. The oxidation occurs by reaction of the high Al composition crystal with H2O vapor (in a N2 carrier gas) at elevated temperatures (≥500° C) and results in stable transparent oxides. Secondary ion mass spectrometry (SIMS) as well as scanning and transmission electron microscopy (SEM and TEM) are employed to evaluate the oxide properties, composition, and oxide-semiconductor interface. The properties of native oxides of the In0.5(AlxGa1-x)0.5P system are compared to those of the AlxGa1-xAs system. Possible reaction mechanisms and oxidation kinetics are considered. The In0.5(AlxGa1-x)0.5P native oxide is shown to be of sufficient quality to be employed in the fabrication of stripe-geometry In0.5(AlxGa1-x)0.5P visible-spectrum laser diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号