首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用UASB/SBBR组合工艺处理垃圾渗滤液,通过控制游离氨(FA)浓度使系统实现亚硝酸型同步硝化反硝化(SND),在此基础上考察了序批式生物膜反应器(SBBR)对总氮和氨氮的去除特性,同时深入分析了亚硝酸型SND的形成机理.试验结果表明:经过60个周期的运行,SBBR系统实现了亚硝酸型SND,且对总氮和氨氮有较高的去除率.当DO为2 mg/L左右时,对TN和NH4+-N的平均去除率分别可达58.95%和95%以上,曝气结束时的SND脱氮率最高可达34.3%.另外,试验发现FA是SBBR系统内亚硝酸型SND形成的主要因素.当FA在13.00~29.84 mg/L范围内变化时,亚硝态氮的积累率从初始的1.7%逐渐上升到93.01%,并能稳定维持在90%以上.  相似文献   

2.
碳源对SBR工艺同步硝化反硝化的影响   总被引:4,自引:1,他引:4  
以低C/N值的模拟城市污水为处理对象,借助序批式活性污泥反应器(SBR),研究了碳源种类、C/N值及碳源投加方式对同步硝化反硝化的影响。结果表明,在试验条件下,啤酒与淀粉的混合物比乙酸钠、葡萄糖等易降解有机物更适合作为同步硝化反硝化的碳源,且随着C/N值的升高,对总氮的去除率从58.99%(C/N值为3.3:1时)上升至87%(C/N值为10:1时);在进水氨氮为30.0mg/L、总氮为32.2mg/L、C/N值为6.7:1及采用间歇投加碳源的条件下,可使出水氨氮、总氮分别降至0.87、1.58mg/L,对总氮的去除率达到了95%,为相同条件下随进水一次性投加碳源的1.32倍。  相似文献   

3.
曝气生物滤池对晚期垃圾渗滤液的短程脱氮研究   总被引:2,自引:1,他引:2  
采用固定化微生物曝气生物滤池(I—BAF)对晚期垃圾渗滤液进行了短程脱氮试验研究。经过微生物固定化和硝化茵培养后,通过控制溶解氧等条件可使反应器(I—BAF1)实现稳定的亚硝化,亚硝化速率平均值是硝化速率的21.5倍,对氨氮的去除率达到90%左右,且氮主要是由同步硝化反硝化作用去除的;与全程脱氮相比,短程脱氮对总氮的去除率更高,其COD主要通过反硝化作用去除;以NaAc为外加碳源,提高C/N值为1.6~2,2时,对总氮的去除率可达60%以上,继续提高C/N值至4.5时,硝化茵因受到异养菌的抑制而活性降低,导致脱氮效果变差。当将两级I—BAF(I—BAF2充分曝气)与Fenton工艺联用时,对COD、氨氮和总氮的去除率分别为95.1%、99.1%和73.8%。  相似文献   

4.
以高氨氮垃圾渗滤液为处理对象,通过边进水边曝气的运行方式,同时控制pH≈7、溶解氧在1~2 mg/L,在SBR内成功实现了稳定的亚硝酸型硝化。当进水氨氮浓度为2 134~2 886mg/L、氨氮负荷高达2 kgNH3-N/(m3.d)时,出水氨氮和亚硝酸盐氮分别为400和1 200 mg/L左右,对氨氮的去除率达到80%以上。游离氨(FA)和游离亚硝酸(FNA)对亚硝态氮氧化菌(NOB)的抑制是实现亚硝酸型硝化的关键。另外,系统内高浓度的亚硝酸盐对异养菌的代谢产生了抑制,对TOC的去除率仅为60%左右。  相似文献   

5.
复合生物反应器的同步硝化反硝化研究   总被引:4,自引:2,他引:4  
以实际生活污水为处理对象,利用有效容积为12 L的间歇式复合生物反应器(填料填充率:30%,运行方式:瞬间进水—曝气660 min—沉淀40 min—排水20 min),研究了DO、COD/TN值、MLSS对同步硝化反硝化的影响。结果表明:当溶解氧浓度从4 mg/L降到0.5 mg/L时,对总氮的去除率从48.9%升至74.2%;当污泥浓度从1 000 mg/L提高至6 000 mg/L时,对总氮的去除率从63.4%升至81.6%;当COD/TN值从3升至15.6时,对总氮的去除率从59%提高至82.5%,但当COD/TN值〉8后,对总氮的去除率提高得并不明显。整个试验过程中SVI〈105mL/g,污泥的沉降性能良好。复合生物反应器易于实现稳定的同步硝化反硝化,并可通过控制DO、MLSS等参数来有效提高对总氮的去除率。  相似文献   

6.
贝壳填料曝气生物滤池的硝化特性研究   总被引:7,自引:1,他引:7  
贝壳粗糙的表面及其合有的大量碳酸钙,可作为生物膜的载体及硝化反应的碱度来源。以海产弃物贝壳为生物膜载体,通过改变进水氨氮浓度及pH值,考察了贝壳填料曝气生物滤池的硝化脱氮规律。结果表明:对于氨氮〈120mg/L的原水,贝壳溶解提供的碱度能够满足硝化反应的需要,因此硝化反应进行得比较完全,对氨氮的去除率不受进水氨氮浓度的影响,可达90%以上;而当进水氨氮浓度达240mg/L时,因贝壳溶解提供的碱度不能完全满足硝化反应之所需,硝化反应将停滞,但对氨氮的去除率仍可达65%左右。此外,进水pH值对贝壳填料曝气生物滤池去除氨氮的效果及出水pH值基本没有影响。  相似文献   

7.
采用序批式活性污泥法(SBR)处理垃圾渗滤液,在控制系统温度为(28±1)℃、进水pH值为7.9~8.2、MLSS为4 000~4 500 mg/L,并保持进水COD为900~1 000 mg/L、NH+4-N为480~500 mg/L的条件下,考察DO对短程硝化反硝化的影响。结果表明,在80~120 L/h的曝气量下能快速实现稳定的短程同步硝化反硝化,对NH+4-N的平均去除率可达92.5%,NO-2-N的平均积累率为89.3%;系统的最佳曝气量为120 L/h,此时对氨氮的去除率为96.9%,亚硝酸盐积累率为97.2%,好氧段对总氮的去除率为74.7%。  相似文献   

8.
韩煦 《江西建材》2014,(5):16-17
以低氨氮(40mg/L~70mg/L),常温(16℃~20℃)城市生活污水经A/O除磷工艺后的出水为原水,在实现亚硝酸型硝化的基础上利用单级SBR系统,研究了不同C/N(碳氮比)和DO(溶解氧)对同时硝化反硝化(SND)的影响。研究结果表明,当进水COD和NH+4-N浓度分别为50~300mg/L和40mg/L~0mg/L、反应条件为DO=0.2mg/L~0.8mg/L、C/N=1~5,反应器中COD、TN的去除率最高分别达到82.1%、79.5%。  相似文献   

9.
短程硝化/厌氧氨氧化/全程硝化工艺处理焦化废水   总被引:1,自引:0,他引:1  
通过对短程硝化和厌氧氨氧化工艺的研究,开发了短程硝化/厌氧氨氧化/全程硝化(O1/A/O2)生物脱氮新工艺并用于焦化废水的处理.控制温度为(35±1)℃、DO为2.0~3.0mg/L,第一级好氧连续流生物膜反应器在去除大部分有机污染物的同时还实现了短程硝化.考察了HRT、DO和容积负荷对反应器运行效果的影响.结果表明,当氨氮容积负荷为0.13~0.22gNH4+-N/(L·d)时,连续流反应器能实现短程硝化并有效去除氨氮.通过控制一级好氧反应器的工艺参数,为厌氧反应器实现厌氧氨氧化(ANAMMOX)创造条件.结果表明,在温度为34℃、pH值为7.5~8.5、HRT为33 h的条件下,经过115 d成功启动了厌氧氨氧化反应器.在进水氨氮、亚硝态氮浓度分别为80和90 mg/L左右、总氮负荷为160 mg/(L·d)时,对氨氮和亚硝态氮的去除率最高分别达86%和98%,对总氮的去除率为75%.最后在二级好氧反应器实现氨氮的全程硝化,进一步去除焦化废水中残留的氨氯、亚硝态氮和有机物.O1/A/O2工艺能有效去除焦化废水中的氨氮和有机物等污染物,正常运行条件下的出水氨氮<15 mg/L、亚硝态氮<1.0 mg/L,COD降至124~186 mg/L,出水水质优于A/O生物脱氮工艺的出水水质.  相似文献   

10.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号