首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
薛刚  侯帅  牛建刚 《建筑结构》2019,49(12):98-102,108
对不同掺量塑钢纤维增强的橡胶混凝土进行抗压强度、抗拉强度、抗折强度、弯曲韧性、抗冲击性能以及耐磨的试验研究,分析塑钢纤维掺量变化对橡胶混凝土路用性能的影响。试验表明:塑钢纤维掺入到橡胶混凝土中,有助于提高橡胶混凝土的抗压强度、抗拉强度、抗折强度、拉压比及折压比,随着塑钢纤维掺量的增加呈先提高后减小的趋势;掺入塑钢纤维后橡胶混凝土的弯曲韧性提高显著,存在最优掺量;塑钢纤维橡胶混凝土的冲击性能大幅度提高;耐磨性能随着塑钢纤维的掺入而不断增强。综合多方面考虑,宜掺6~8kg/m~3塑钢纤维。  相似文献   

2.
研究了不同掺量短切玄武岩纤维对轻骨料混凝土的抗压强度、劈裂抗拉强度和抗折强度三种力学性能的影响。结果表明,掺入玄武岩纤维的轻骨料混凝土的7d抗压强度随纤维掺量的增加而增大,但对28d抗压强度没有显著影响,当纤维掺量超过0.15%时,28d抗压强度呈下降发展趋势;随玄武岩纤维掺量的增加,轻骨料混凝土的劈裂抗拉强度及抗折强度均呈先增加后降低的发展趋势,当纤维掺量为0.15%时,上述两种强度指标均取得最大值;玄武岩纤维掺入轻骨料混凝土中能够改善其脆性,增加其韧性,改善轻骨料混凝土的受压破坏形态和抗折破坏形态。  相似文献   

3.
通过试验,研究不同龄期下的高强混凝土,其力学性能随聚丙烯腈纤维及聚丙烯纤维掺量变化的发展规律。研究结果表明:聚丙烯腈纤维的掺入降低了高强混凝土7d、28d抗压强度,而聚丙烯纤维的掺入则不同程度上提高了高强混凝土的7d、28d抗压强度;聚丙烯腈纤维和聚丙烯纤维的掺入均降低了高强混凝土7d抗折强度,而不同程度上提高了28d抗折强度.研究结果可为纤维高强粉煤灰混凝土推广应用于路面工程提供参考。  相似文献   

4.
分别研究了不同掺量短切玄武岩纤维对轻骨料混凝土及橡胶颗粒代替部分细集料后的轻骨料混凝土的抗压、劈裂抗拉和抗折性能的影响。试验研究表明:玄武岩纤维能有效提高轻骨料混凝土的抗压强度、劈裂抗拉强度和抗折强度;当在轻骨料混凝土中掺入橡胶颗粒后,抗压强度随着纤维掺量的增加呈递减趋势,劈裂抗拉强度随着纤维掺量的增加不显著变化,抗折强度随着纤维掺量的增加呈现先降低后增加的变化趋势;掺入橡胶颗粒的轻骨料混凝土的三项力学指标数值均低于对应的不掺橡胶颗粒的轻骨料混凝土。  相似文献   

5.
《Planning》2017,(13)
通过轻骨料混凝土在不同塑钢纤维掺量下的抗压强度、劈裂抗拉强度、抗折强度、弯曲韧性和抗冲击性能的试验研究,分析塑钢纤维掺量对轻骨料混凝土力学性能的影响。结果表明:在轻骨料混凝土中掺入塑钢纤维对其抗压强度、抗折强度没有明显影响,但其弯曲剩余强度显著提高,劈裂抗拉性能和抗冲击性能得到明显改善。  相似文献   

6.
PVA纤维对混凝土力学性能的影响   总被引:3,自引:0,他引:3  
研究了不同长度PVA纤维的掺入对高强度混凝土力学性能的影响。结果表明,PVA纤维在0.08%~0.1%的体积掺量范围内效果最佳,能有效提高抗折强度,且长径比越小,效果越明显。长度为6mm,掺量为0.08%~0.1%的PVA纤维混凝土,7d抗压强度比基准混凝土降低5.22%,抗折强度提高14.28%,静弹性模量提高6.63%;28d抗压强度降低3.03%,抗折强度提高21.67%,静弹性模量降低4.52%。  相似文献   

7.
路用纤维橡胶粉混凝土力学性能试验研究   总被引:1,自引:0,他引:1  
为了研究纤维和橡胶粉协同作用对路用混凝土力学性能和延性的影响规律,通过了22组试验,分别对基准混凝土、橡胶混凝土和纤维橡胶混凝土进行了抗压强度、抗折强度和劈裂强度试验。试验结果表明:随着40目橡胶粉掺量的增加,混凝土抗压强度有降低的变化规律;纤维和橡胶粉的复配掺入,可以改善混凝土的抗折强度和延性,对于纤维-40目橡胶粉混凝土,橡胶粉掺量控制在6%以内,纤维掺量控制在0.5%以内为佳;有利于改善路用混凝土的使用性能,为路用纤维橡胶混凝土的利用提供借鉴。  相似文献   

8.
为了研究聚丙烯纤维对橡胶混凝土工作性能及力学性能的影响,选取橡胶置换率5%和25%的混凝土作为基础试验,按纤维掺量为0、0.3、0.6、0.9、1.2 kg/m~3掺入聚丙烯纤维,研究掺入纤维后混凝土的工作性能及基本力学性能并给出各工作及力学性能与纤维掺量的经验计算式,试验结果表明:橡胶混凝土的坍落度随纤维的增加而显著降低;抗压强度随纤维的增加先升高后降低;劈裂抗拉强度、抗折强度、拉压比和折压比均随纤维的增加而升高。综合考虑橡胶混凝土的工作性能及力学性能,建议聚丙烯纤维的掺量小于1.2 kg/m~3。就研究结果,聚苯乙烯纤维的最佳掺量为0.9 kg/m~3。  相似文献   

9.
将玄武岩、聚丙烯纤维以单掺和混杂的形式掺入普通C30混凝土基体中,通过对4种掺加量在不同的掺加方式—单掺和3种不同混杂比例的混掺下对混凝土基体的28d抗压、劈裂抗拉、抗折等性能进行试验研究。结果表明,混凝土中掺入纤维后,对基体混凝土的抗压强度有降低作用;低掺量纤维对基体劈裂抗拉强度有明显的提高;对抗折强度有大幅度的提高作用;同时,对混凝土破坏形态有极大改善作用,其中混杂纤维优于单掺纤维。  相似文献   

10.
用橡胶粉以20%的比例等体积替换C40混凝土中的砂,制成橡胶混凝土,并添加不同种类的纤维对其进行改性。试验表明,橡胶粉与水泥结合状况较好,橡胶混凝土具有低自重、低弹模,较好的延性及抗裂性能等优点,但强度及流动性降低明显。纤维的掺入能提高橡胶混凝土的强度,同时不降低其延性及抗裂性能。纤维对橡胶混凝土抗折强度的改善效果优于抗压强度及劈裂抗拉强度。钢纤维是改善效果最明显的单掺纤维,塑钢纤维与水泥缺乏足够的黏结力而改善效果不佳。纤维混杂后,在一定范围的掺量呈现正效应。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Ein effizientes Lebenszyklusmanagement von Betonbauwerken erfordert die Dauerhaftigkeitsbemessung beim Neubau bzw. die Lebensdauerprognose für Bestandsbauten. Sie ermöglichen gleichermaßen eine wirtschaftliche wie auch eine nachhaltigkeitsbezogene Optimierung einer Konstruktion bzw. einzuleitender Erhaltungsmaßnahmen. Der vorliegende Beitrag behandelt schwerpunktmäßig die Dauerhaftigkeitsbemessung. Dabei werden weniger die Schadensmechanismen auf Bauteilebene beleuchtet als vielmehr die Methodik des Übergangs vom Bauteil zur Gesamtkonstruktion. Ebenfalls wird dargestellt, wie die Interaktion dauerhaftigkeitsrelevanter Einwirkungen modelliert werden kann und wie singuläre Risiken (z. B. Spannstahlkorrosion) in einer Gesamtbetrachtung berücksichtigt werden können. Service life design in concrete construction – From the deterioration process related to components to safety analysis of whole structures Relevant methods for the lifetime management of concrete structures are the design for durability relating to new structures and the lifetime prediction relating to existing structures. These methods allow to manage the entire lifetime of a concrete structure while avoiding cost‐intensive maintenance measures and corresponding downtimes. This paper focuses on the design for durability. Major emphasis is put on the presentation of methods to describe the behaviour of the concrete structure as a whole resulting from the integration of the deterioration effects on the member level. Based on the fact that different deterioration mechanisms occur in combination with each other, procedures for modelling interactions and singular risks (e. g. corrosion of tendons) are dealt with as well in this paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号