首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present research involves the deposition of pulsed DC CFUBM sputtered TiN on nickel plated steel discs and electroplated monolayer cBN wheels at seven different target frequencies and ten different bias voltages separately. The coating microstructures and the interaction between TiN and nickel were studied using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electron probe micro analysis (EPMA). Phase detection was carried out using grazing incidence X-ray diffraction (GIXRD) technique. The cohesive and adhesive strengths of nickel layer were assessed by scratch test. After grinding of low carbon steel (AISI 1020) and hardened bearing steel (AISI 52100), the conditions of the uncoated and coated cBN wheels were observed under Stereo Zoom Microscope and SEM.Average column size of TiN was found to decrease with increase in both target frequency and negative bias voltage. The structure of the coating gradually transformed from porous and open columnar (at 0 V bias) to very compact, dense and featureless (at − 80 V bias). EDX line scan and EPMA confirmed the cross-diffusion between TiN and nickel and GIXRD indicated the formation of nickel-titanium intermetallic phases at their interface. The cohesive strength of nickel layer was not effectively enhanced with increase in target frequency, whereas the same was significantly improved with increase in negative bias voltage. Seemingly, TiN coated wheel could not perform better than the uncoated wheel in grinding AISI 1020 steel due to high wheel loading. However, the uncoated wheel was found to undergo fracture wear, which was remarkably absent in the coated wheels. On the other hand, many fractured grits and some grit pull-out were observed in the uncoated wheel when grinding AISI 52100 steel, whereas almost no pull-out along with much less fractured grits were observed in the wheels coated at bias voltages like − 60 V and − 90 V.  相似文献   

2.
This work investigated the effectiveness of TiN coating in enhancing the performance of two different types of single-layer cBN grinding wheels. One was galvanically bonded type where galvanic metal layer covered less than 50% of the grit height. In this paper, it is termed as underplated wheel. The other one was brazed cBN wheel which was developed in-house. In this case, the grits were bonded by a braze alloy layer. TiN coating, well known for its anti-wear and anti-friction characteristics, finds use in cutting tools and tribological applications. In this case study, such TiN was successfully deposited on the above-mentioned two types of grinding wheels with a dual cathode closed-field unbalanced magnetron sputtering (CFUBMS) system. Performance of those TiN-coated wheels was compared with that of uncoated counterparts in terms of grinding force and percentage of grit failure. Grinding tests were carried out in plunge mode and under dry condition. Experimental results clearly revealed the fact that the role of TiN coating was not that significant in reducing the friction at the wheel-workpiece contact zone. However, it was able to substantially reduce grit pullout of the underplated cBN wheel. On the other hand, uncoated brazed cBN wheel did not suffer from grit pullout, but severe premature breakage of cBN grits at the bond level was observed. This was remarkably arrested when TiN coating was applied on the active surface of the wheel.  相似文献   

3.
Machining data are presented for small diameter, profiled (fir tree root form), single layer/electroplated CBN (B46, B76 and 91) and diamond (D46) grinding wheels, when cutting Udimet 720. Spindles operating at 60,000 and 90,000 rpm were employed, with a synthetic polyalphaolefine (PAO) oil based fluid in a down grinding mode on single sided specimens. Operating parameters were selected to reflect finishing conditions. Measured tool wear was lower for CBN grit as compared to diamond however workpiece roughness was lower with Ra approaching 0.75 μm when using D46 wheels. Higher rotational speed produced lower grinding wheel wear. No workpiece burning was observed irrespective of grit type at the conditions tested.  相似文献   

4.
An experimental study was undertaken to investigate the role of process parameters on grindability of medium carbon steel with particular emphasis on surface integrity. Grinding with miniature monolayer electroplated cBN wheels provided compressive residual stress throughout the experimental domain unlike conventional grinding. This can be attributed to desirable temperature control as the wheel takes away substantial part of grinding heat flux owing to its better thermal conductivity. Micromagnetic or Barkhausen Noise (BN) parameters correlated linearly with the residual stress indicating its applicability in assessing surface integrity of cBN ground products. Increase in maximum grit depth of cut (h m) provided more grain elongation and surface hardness due to more chip load during chip formation.  相似文献   

5.
Nitride films are deposited from a single equiatomic AlCrMoSiTi target by reactive DC magnetron sputtering. The influence of the substrate bias and deposition temperature on the coating structure and properties are investigated. The bias is varied from 0 to − 200 V while maintaining a substrate temperature of 573 K. And the temperature is changed from 300 to 773 K whilst maintaining a substrate bias of − 100 V. From X-ray diffraction analysis, it is found that all the as-deposited coatings are of a single phase with NaCl-type FCC structure. This is attributed to the high mixing entropy of AlN, CrN, MoN, SiN, and TiN, and the limited diffusion kinetics during coating growth. Specific aspects of the coating, namely the grain size, lattice constant and compressive stress, are seen to be influenced more by substrate bias than deposition temperature. In fact, it is possible to classify the deposited films as large grained (~ 15 nm) with a reduced lattice constant (~ 4.15 Å) and low compressive residual stresses for lower applied substrate biases, and as small grained (~ 4 nm) with an increased lattice constant (~ 4.25 Å) and high compressive residual stresses for applied biases of − 100 V or more. A good correlation between the residual stress and lattice constant under various deposition conditions is found. For the coatings deposited at − 100 V, and at temperatures above 573 K, the hardness could attain to the range of 32 to 35 GPa.Even after annealing in vacuum at 1173 K for 5 h, there is no notable change in the as-deposited phase, grain size or lattice constant of the coatings but an increase in hardness. The thermal stability of microstructure is considered to be a result of the high mixing entropy and sluggish diffusion of these multi-component coatings. For the anneal hardening it is proposed that the overall bonding between target elements and nitrogen is enhanced by thermal energy during annealing.  相似文献   

6.
In this study, Ti-containing diamond-like carbon (Ti-DLC) coatings have been deposited on HNBR (hydrogenated nitrile butadiene) rubber and also on Si wafer as reference via unbalanced magnetron reactive sputtering from a Ti target in C2H2/Ar plasma. The deposition rates of coatings on rubber and Si wafer were about the same. Columnar structures resulting from a rough interface were often observed in the coatings deposited on rubbers. Only at a high bias voltage of − 300 V the coating on HNBR rubber became column-free whereas a bias voltage of − 100 V could already restrain the columnar structure and thus produced dense and smooth coatings on Si wafer. A segmented morphology of the coatings on HNBR rubber is formed as a result of the large difference in thermal expansion between the coating and HNBR rubber. The crack network that separates the patches plays an important role in maintaining the coating flexibility. The size of the patches reduces with increasing bias voltage and thus the variation of deposition temperature. A high bias voltage enhances the hardness of Ti-coating and the rubber-coating adhesion, and guarantees a good tribological performance. When sliding against ø6 mm 100Cr6 steel ball counterpart, very low coefficients of friction were achieved (< 0.25 for the coated rubber versus > 1.3 for the uncoated). The Ti-DLC coating can be considered as a promising material for the enhancement of tribological performance of rubbers.  相似文献   

7.
Multi-element (AlCrTaTiZr)N coatings are deposited onto Si and cemented carbide substrates by reactive RF magnetron sputtering in an Ar + N2 mixture. The influence of substrate bias voltage, ranging from 0 to − 200 V, on the microstructural, mechanical and tribological properties of these nitride coatings is studied. A reduction in concentration of N and Al is observed with increasing substrate biases. The (AlCrTaTiZr)N coatings show the face-centered-cubic crystal structure (B1-NaCl type). The use of substrate bias changes the microstructure of the (AlCrTaTiZr)N coating from the columns with microvoids in boundaries to the dense and less identified columns. The compressive macrostress increases from − 0.9 GPa to − 3.6 GPa with an increase of substrate bias. The hardness and adhesion increase to peak values of 36.9 GPa and 60.7 N at the bias voltage of − 150 V, respectively. The tribological properties of the (AlCrTaTiZr)N coatings against 100Cr6 steel balls are evaluated by a ball-on-disc tribometer with a 10 N applied load. With an increase of substrate bias, the wear rate reduces while the friction coefficient almost keeps constant at 0.75. The lowest wear rate of 3.65 × 10− 6 mm3/Nm is obtained for the (AlCrTaTiZr)N coating deposited at the bias voltage of − 150 V.  相似文献   

8.
本文介绍了"十一五"期间我国高速高效精密超硬材料磨具制造领域研究开发的汽车发动机曲轴高速高效磨削用cBN砂轮、集成电路(IC)晶圆背面减薄磨削用金刚石系列砂轮、晶圆划片与分割用电镀结合剂高精度超薄金刚石切割砂轮、精密研磨用陶瓷结合剂超硬材料磨盘、高硬度刀片磨边用新型复合结合剂金刚石砂轮等5种新产品。重点描述了在新型结合剂、成型技术、加工技术等方面取得的技术突破以及产品应用效果,并对该领域未来发展趋势做了简要分析。  相似文献   

9.
Brief design and manufacture considerations are detailed for a hybrid electrochemical grinding unit adapted from a vertical machining centre using a 40,000 rpm spindle and 500 A DC generator. Subsequently, experimental work is presented on the influence of tool bond systems, superabrasive grit type and electrical parameters when simultaneous ECM/grinding Udimet 720 using 10-15 mm diameter plain points. Single layer electroplated CBN tools produced G-ratios and maximum normal cutting forces of ∼451 and ∼45 N, respectively, compared to ∼128 and 557 N for equivalent diamond wheels. Data on workpiece roughness and overcut are also presented as are initial results for a fir tree shaped tool.  相似文献   

10.
采用扫描电子显微镜和X射线衍射仪等仪器对镀钛前后的cBN磨料和陶瓷结合剂烧结样条的显微结构进行了观察;分析了结合剂与cBN磨料的结合关系,并对陶瓷结合剂烧结样条进行了抗折强度试验。结果表明,cBN磨料镀钛前后其性能变化很小,未镀钛cBN磨料与结合剂烧结样条的抗折强度为61.97MPa,两者间是机械包镶式的结合;镀钛cBN磨料与结合剂烧结样条的抗折强度为67.65MPa,两者间还含有化学结合;cBN磨料镀钛后对砂轮强度的提高有益,但前者的抗折强度已满足超高速砂轮的需要,单就提高砂轮强度来说,无需镀钛。  相似文献   

11.
To enhance the mechanical properties of TiN coating on magnesium alloy, metal vapor vacuum arc (MEVVA) ion implantation was performed to modify magnesium alloy substrate before TiN film deposition. Implantation energy was fixed at 45 keV and dose was at 9 × 1017 cm− 2. TiN coatings were deposited by magnetically filtered vacuum-arc plasma source on unimplanted and implanted substrate. The microstructure composition distribution and phase structure were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical states of some typical elements of the TiN coating were analyzed by means of X-ray photoelectron spectroscopy (XPS). The properties of corrosion resistance of TiN coatings were studied by CS300P electrochemical-corrosion workstation, and the mechanism of the corrosion resistance was also discussed.  相似文献   

12.
This paper discusses the synthesis and characterization of titanium chromium nitride ((Ti,Cr)N) thin films deposited onto AM355 stainless steel by multi-source cathodic arc physical vapor deposition (PVD) for improved erosion resistance. The effect of Cr evaporator current and substrate bias on the erosion resistance of the (Ti,Cr)N coating were investigated. The coatings were characterized using X-ray diffraction, scanning electron microscopy, electron probe microanalysis, scanning transmission electron microscopy, scratch adhesion testing and erosion testing. The (Ti,Cr)N coatings deposited using multisource mode were determined to be nanolayered structures consisting of TiN rich and CrN rich layers. EPMA showed that the atomic percentage of Cr within the coating increased (increased Cr:Ti ratio) with increasing Cr evaporator current and that the (Ti,Cr)N chemical composition did not appear to change with varying bias. Using XRD and STEM, it was determined that all nanolayer (Ti,Cr)N coatings were multi-phased consisting of a B1 NaCl crystal structure. XRD also revealed that as the Cr evaporator current was increased, there was an increase in the CrN phase volume. Macroparticle incorporation increased with an increase in Cr evaporator current and decreased with an increase in bias. The nanolayer (Ti,Cr)N coatings ranged in Vickers hardness from 1700 to 2800 VHN0.050. Coating adhesion increased as Cr:Ti ratio increased. In regards to erosion, (Ti,Cr)N coatings with a high number of TiN/CrN interfaces performed poorly against alumina media. As the Cr evaporator current was varied, the coating deposited with the highest Cr:Ti ratio (evaporator current of 85 A) and when bias was varied, the lowest substrate bias of - 50 V had the best erosion performance.  相似文献   

13.
cBN砂轮窄深槽加工机理研究   总被引:1,自引:0,他引:1  
为深入分析窄深槽加工机理,将成形电镀cBN砂轮切削部位划分为顶刃区和侧刃区.在此基础上推导出顶刃区单颗cBN磨粒的最大切削厚度的计算公式.同时对侧刃区加工过程建立数学模型,得出磨粒产生弹性滑擦的分界线长度.结合加工后窄深槽不同部位的SEM形貌分析得知,单颗磨粒最大切削厚度不同量级时,工件材料去除方式以塑性化磨削和微脆性...  相似文献   

14.
高温钎焊立方氮化硼界面微结构   总被引:4,自引:1,他引:4       下载免费PDF全文
以Ag-Cu-Ti合金为钎料采用真空钎焊的方法在优化的钎焊温度和时间下,实现了立方氮化硼(CBN)与砂轮基体的牢固连接。运用扫描电镜(SEM)、X射线能谱仪(EDS)及X射线粉末衍射仪(XRD)对连接界面的微观组织以及CBN表面生成物的三维形貌、化学成分、物相结构进行了综合分析。结果表明,钎料中的元素Ti向CBN表面扩散富集,生成了针状TiB2和TiN,在磨粒与钎料界面形成化学冶金结合,这是CBN与Ag-Cu-Ti钎料间有良好浸润性和高结合强度的主要原因。磨削对比试验表明钎焊CBN砂轮比电镀CBN砂轮具有更高的磨粒把持强度。  相似文献   

15.
Electroplated single-layer grinding wheels, in spite of offering unique useful features like geometrical flexibility, large chip accommodation volume in the inter-grit space, etc., produce high transverse surface roughness on the ground surface of the workpiece. Non-participation of all the superabrasive particles (grits) attributes to this limiting factor. Moreover, in plunge grinding the situation is the worst to deal with. This work is an attempt to reduce the same to an acceptable magnitude so that post-grinding finishing operations can be executed effectively. However, this procedure has been implemented on indigenously developed brazed-type single-layer cBN wheels. This class of grinding wheel has been found superior to its galvanically bonded counterpart in the view of larger grit protrusion and flexibility to print any pattern of grit distribution. In this investigation, brazed cBN wheels with different grit distribution patterns have been conditioned by touch-dressing method so that grit tips get micro-conditioned and allow the underlying grits to participate and consequently increase the quality of finish. The outcome of this attempt appeared highly encouraging. A substantial improvement of transverse surface roughness could be achieved with all three categories of brazed wheels and the role of grit distribution pattern in obtaining good finish was thoroughly investigated.  相似文献   

16.
TiN coating was deposited by arc evaporation PVD (physical vapor deposition) onto tool steel. A netted screen made of the stainless steel was placed between substrate and vaporizer in order to get discontinuous TiN coatings. Three kinds of surface condition (uncoated, continuous and discontinuous TiN coatings) were prepared and examined for their performance. Tribological behavior was investigated by means of dry and lubricated sliding tests at room temperature and 200 °C, on a disk-on-block and sphere-on-flat tribometer. The results show that the discontinuous TiN coating significantly decreases both the wear and the wearing speed of tool steel under sliding tests, and reduces friction under conditions of bidirectional sliding. In the three kinds of surface condition, the discontinuously coating has superiority for high speed cutting owing to its lifetime increasing compared with uncoated and continuously coated.  相似文献   

17.
钛合金在磨抛加工时容易产生烧伤和黏附现象,严重影响其磨抛质量。本文利用超声振荡的方法,将六方氮化硼和缩丁醛制备成固体润滑剂并均匀涂敷在电镀cBN磨头上,对TC4钛合金进行了磨抛试验。试验结果表明:涂敷六方氮化硼润滑剂的磨头磨抛钛合金时,能获得Ra为1.30μm的磨抛表面,且磨削加工性能要优于无润滑剂的单层电镀cBN磨头。  相似文献   

18.
Ti-doped graphite-like carbon (GLC) films with different microstructures and compositions were fabricated using magnetron sputtering technique. The influence of bias voltages on microstructure, hardness, internal stress, adhesion strength and tribological properties of the as-deposited GLC films were systemically investigated. The results showed that with increasing bias voltage, the graphite-like structure component (sp2 bond) in the GLC films increased, and the films gradually became much smoother and denser. The nanohardness and compressive internal stress increased significantly with the increase of bias voltage up to −300 V and were constant after −400 V. GLC films deposited with bias voltages in the range of -300--400 V exhibited optimum adhesion strength with the substrates. Both the friction coefficients and the wear rates of GLC films in ambient air and water decreased with increasing voltages in the lower bias range (0--300 V), however, they were constant for higher bias values (beyond −300 V) . In addition, the wear rate of GLC films under water-lubricated condition was significantly higher for voltages below −300 V but lower at high voltage than that under dry friction condition. The excellent tribological performance of Ti-doped GLC films prepared at higher bias voltages of −300--400 V are attributed to their high hardness, tribo-induced lubricating top-layers and planar (2D) graphite-like structure.  相似文献   

19.
The deformation mechanisms of a range of TiN coatings with different thicknesses, deposited on a V820 steel substrate following nanoindentation were characterized using focused ion beam (FIB) cross-sectioning and imaging, as well as cross-sectional transmission electron microscopy (TEM) of the indented region. Four TiN coatings were examined, including a cathodic arc evaporation (CAE) coating with a thickness of ∼ 0.7 μm and low voltage electron beam (LVEB) evaporation coatings with thicknesses of ∼ 2.0, ∼ 3.7 and ∼ 4.0 μm. Based on a model developed by Xie et al., the intercolumnar shear stresses were calculated to be approximately 2.20, 3.05, 3.50 and 3.55 GPa in the ∼ 0.7, ∼ 2.0, ∼ 3.7 and ∼ 4.0 μm thick TiN coatings respectively, that is, increasing as the coating thickness increases. Columnar cracking and shear steps at the coating/substrate interface were observed more frequently in the thinner TiN coatings indicated that these coatings deformed predominantly by shear along the columnar grain boundaries. In contrast, inclined cracking was the more dominant fracture type in the thicker TiN coatings. It is suggested that increased grain boundary strength occurs together with a lack of direct crack path along the grain boundaries through the thicker coatings due to the more equiaxed grain structure. Clearly, the grain structure and/or thickness of the TiN coating play a highly significant role in the deformation mechanisms.  相似文献   

20.
The effect of substrate bias on the structural, morphological, electrical and mechanical properties of amorphous carbon (a―C) films having embedded nanocrystallites deposited by filtered cathodic jet carbon arc technique has been investigated. X-ray diffraction exhibits predominantly an amorphous nature of the film. High resolution transmission electron microscope investigations reveal largely an amorphous structure. However, an ultra-fine nanograined microstructure with the average grain size between 20 and 50 nm was observed throughout the entire film and the majority of the individual grains were single crystallites with the preferred interplanar spacing of about 0.2 nm. All the parameters evaluated were seen to depend strongly on the negative substrate bias and exhibit maxima or minima in the properties of the films deposited at − 150 V substrate bias. These a-C films having embedded nanocrystallites act as hard coating materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号