首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of quasi‐two‐dimensional solution of Poisson's equation, an analytical threshold voltage model for junctionless dual‐material double‐gate (JLDMDG) metal‐oxide‐semiconductor field‐effect transistor (MOSFET) is developed for the first time. The advantages of JLDMDG MOSFET are proved by comparing the central electrostatic potential and electric field distribution with those of junctionless single‐material double‐gate (JLSMDG) MOSFET. The proposed model explicitly shows how the device parameters (such as the silicon thickness, oxide thickness, and doping concentration) affect the threshold voltage. In addition, the variations of threshold voltage roll‐off, drain‐induced barrier lowering (DIBL), and subthreshold swing with the channel length are investigated. It is proved that the device performance for JLDMDG MOSFET can be changed flexibly by adjusting the length ratios of control gate and screen gate. The model is verified by comparing its calculated results with those obtained from three‐dimensional numerical device simulator ISE. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an analytical subthreshold surface potential model of novel structures called asymmetric pocket‐implanted Double‐Halo Dual‐Material Gate (DHDMG) and Single‐Halo Dual‐Material Gate (SHDMG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET), which combines the advantages of both the channel engineering (halo) and the gate engineering techniques (dual‐material gate) to effectively suppress the short‐channel effects (SCEs). The model is derived using the pseudo‐2D analysis by applying the Gauss's law to an elementary rectangular box in the channel depletion region, considering the surface potential variation with the channel depletion layer depth. The asymmetric pocket‐implanted model takes into account the effective doping concentration of the two linear pocket profiles at the source and the drain ends. The inner fringing field capacitances are also considered in the model for accurate estimation of the subthreshold surface potential at the two ends of the MOSFET. The same model is used to find the characteristic parameters for dual‐material gate with single‐halo and double‐halo implantations. It is concluded that the DHDMG device structure exhibits better suppression of the SCEs and the threshold voltage roll‐off than a pocket‐implanted and SHDMG MOSFET after investigating the characteristics parameter improvement. In order to validate our model, the modeled expressions have been extensively compared with the simulated characteristics obtained from the 2D device simulator DESSIS. A nice agreement is achieved with a reasonable accuracy over a wide range of device parameter and bias condition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a full‐band Monte Carlo simulator is employed to study the dynamic characteristics and high‐frequency noise performances of a double‐gate (DG) metal–oxide–semiconductor field‐effect transistor (MOSFET) with 30 nm gate length. Admittance parameters (Y parameters) are calculated to characterize the dynamic response of the device. The noise behaviors of the simulated structure are studied on the basis of the spectral densities of the instantaneous current fluctuations at the drain and gate terminals, together with their cross‐correlation. Then the normalized noise parameters (P, R, and C), minimum noise figure (NFmin), and so on are employed to evaluate the noise performances. To show the outstanding radio‐frequency performances of the DG MOSFET, a single‐gate silicon‐on‐insulator MOSFET with the same gate length is also studied for comparison. The results show that the DG structure provides better dynamic characteristics and superior high‐frequency noise performances, owing to its inherent short‐channel effect immunity, better gate control ability, and lower channel noise. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
On the basis of the exact solution of Poisson's equation and Pao–Sah double integral for long‐channel bulk MOSFETs, a continuous and analytic drain current model for the undoped gate stack (GS) surrounding‐gate (SRG) metal–oxide–semiconductor field‐effect transistor (MOSFET) including positive or negative interface fixed charges near the drain junction is presented. Considering the effect of the interface fixed charges on the flat‐band voltage and the electron mobility, the model, which is expressed with the surface and body center potentials evaluated at the source and drain ends, describes the drain current from linear region to saturation region through a single continuous expression. It is found that the surface and body center potentials are increased/decreased in the case of positive/negative interface fixed charges, respectively, and the positive/negative interface fixed charges can decrease/increase the drain current. The model agrees well with the 3D numerical simulations and can be efficiently used to explore the effects of interface fixed charges on the drain current of the gate stack surrounding‐gate MOSFETs of the charge‐trapped memory device. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a three‐dimensional (3D) model of threshold voltage is presented for dual‐metal quadruple‐gate metal‐oxide‐semiconductor field effect transistors. The 3D channel potential is obtained by solving 3D Laplace's equation using an isomorphic polynomial function. Threshold voltage is defined as the gate voltage, at which the integrated charge (Qinv) at the ‘virtual‐cathode’ reaches to a critical charge Qth. The potential distribution and the threshold voltage are studied with varying the device parameters like gate metal work functions, channel cross‐section, oxide thickness, and gate length ratio. Further, the drain‐induced barrier lowering has also been analyzed for different gate length ratios. The model results are compared with the numerical simulation results obtained from 3D ATLAS device simulation results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, nanoscale metal–oxide–semiconductor field‐effect transistor (MOSFET) device circuit co‐design is presented with an aim to reduce the gate leakage curren t in VLSI logic circuits. Firstly, gate leakage current is modeled through high‐k spacer underlap MOSFET (HSU MOSFET). In this HSU MOSFET, inversion layer is induced in underlap region by the gate fringing field through high‐k dielectric (high‐k) spacer, and this inversion layer in the underlap region acts as extended source/drain region. The analytical model results are compared with the two‐dimensional Sentaurus device simulation. Good agreement is obtained between the model and Sentaurus simulation. It is observed that modified HSU MOSFET had improved off current, subthreshold slope, and drain‐induced barrier lowering characteristics. Further, modified HSU MOSFET is also analyzed for gate leakage in generic logic circuits. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents an analytical subthreshold model for surface potential and threshold voltage of a triple‐material double‐gate (DG) metal–oxide–semiconductor field‐effect transistor. The model is developed by using a rectangular Gaussian box in the channel depletion region with the required boundary conditions at the source and drain end. The model is used to study the effect of triple‐material gate structure on the electrical performance of the device in terms of changes in potential and electric field. The device immunity against short‐channel effects is evaluated by comparing the relative performance parameters such as drain‐induced barrier lowering, threshold voltage roll‐off, and subthreshold swing with its counterparts in the single‐material DG and double‐material DG metal–oxide–semiconductor field‐effect transistors. The developed surface potential model not only provides device physics insight but is also computationally efficient because of its simple compact form that can be utilized to study and characterize the gate‐engineered devices. Furthermore, the effects of quantum confinement are analyzed with the development of a quantum‐mechanical correction term for threshold voltage. The results obtained from the model are in close agreement with the data extracted from numerical Technology Computer Aided Design device simulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, a self‐contained numerical simulation tool for nanoscale Ion‐Sensitive Field‐Effect Transistor (ISFET) is developed. The tool is based on merging nanoscale ballistic MOSFET analytical equations with the Gouy–Chapman–Stern model equations of ISFET to form a system of nonlinear equations that can be solved iteratively to yield ISFET output current. The numerical solution is accomplished using Newton–Raphson method with efficient trust‐region‐dogleg algorithm using MATLAB software coding. The tool is used to optimize the sensitivity and linearity of nanoscale ISFETs, and to study their dependence on reference voltage, drain current level, and gate‐insulator thickness. Moreover, a comparison between three types of insulators, SiO2, Si3N4, and Al2O3, has been made. The tool is given the name: NIST (Nanoscale ISFET Simulation Tool). It can be used as a guide for design and optimization of nanoscale ISFETs and can be applied for both single‐gate and double‐gate structures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
High‐κ gate‐all‐around structure counters the Short Channel Effect (SCEs) mostly providing excellent off‐state performance, whereas high mobility III–V channel ensures better on‐state performance, rendering III–V nanowire GAAFET a potential candidate for replacing the current FinFETs in microchips. In this paper, a 2D simulator for the III–V GAAFET based on self‐consistent solution of Schrodinger–Poisson equation is proposed. Using this simulator, capacitance–voltage profile and threshold voltage are characterized, which reveal that gate dielectric constant (κ) and oxide thickness do not affect threshold voltage significantly at lower channel doping. Moreover, change in alloy composition of InxGa1‐xAs, channel doping, and cross‐sectional area has trivial effects on the inversion capacitance although threshold voltage can be shifted by the former two. Although, channel material also affects the threshold voltage, most sharp change in threshold voltage is observed with change in fin width of the channel (0.005 V/nm for above 10 nm fin width and 0.064 V/nm for sub‐10 nm fin width). Simulation suggests that for lower channel doping below 1023 m−3, fin width variation affects the threshold voltage most. Whereas when the doping is higher than 1023 m−3, both the thickness and dielectric constant of the oxide material have strong effects on threshold voltage (0.05 V/nm oxide thickness and 0.01 V/per unit change in κ). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a simple, quasi‐static, non‐linear (saturated mode) NMOS drain‐current model for Volterra‐series analysis. The model is based on a linear transconductance, a linear drain‐source conductance and a purely non‐linear drain‐source current generator. The drain‐current dependency on both drain‐source and gate‐source voltages is included. Model parameters are then extracted from direct numerical differentiation of DC I/V measurements performed on a 160 × 0.25 µm NMOS device. This paper presents the Volterra analysis of this model, including algebraic expressions for intercept points and output spectrum. The model has been verified by comparing measured two‐tone iIP2 and iIP3 with the corresponding model predictions over a wide range of bias points. The correspondence between the modelled and measured response is good. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the propagation delay of a complementary metal‐oxide semiconductor (CMOS) inverter circuit in sub‐threshold regime has been analyzed thoroughly with respect to variable loads, rise and fall time of input, device dimensions and temperature, without neglecting the significant drain induced barrier lowering (DIBL) and body bias effects. In particular, sub‐threshold slope factor and current strength have been modeled with respect to temperature, which would be efficacious for the analysis of sub‐threshold circuit as temperature plays an important role in propagation delay. Transistor stacking has also been modeled considering variation in threshold voltage, sub‐threshold slope factor and DIBL coefficient owing mainly to fluctuation in doping levels. The CMOS inverter delay model together with transistor stacking model has been incorporated in the analysis of propagation delays of NAND and NOR gates. Extensive simulations have been performed under 45 and 22 nm CMOS technology using simulation program with integrated circuit emphasis (SPICE) to ensure the correctness of the analysis. Simulation shows that this model is applicable for the analysis of digital sub‐threshold circuit in sub‐90 nm technology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano‐circuit simulation. The FinFET used in this work is designed using careful engineering of source–drain extension, which simultaneously improves maximum frequency of oscillation ƒmax because of lower gate to drain capacitance, and intrinsic gain AV0 = gm/gds, due to lower output conductance gds. The framework for the ANN‐based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current Id on drain–source Vds and gate–source Vgs is derived by a simple two‐layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low‐noise amplifier. At low power (Jds∼10 µA/µm) improvement was observed in both third‐order‐intercept IIP3 (∼10 dBm) and intrinsic gain AV0 (∼20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first‐order to third‐order derivative of Id with respect to gate voltage and lower gds in FinFET compared to bulk MOSFET. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
An efficient technique for designing high‐performance logic circuits operating in sub‐threshold region is proposed. A simple gate‐level body biasing circuit is exploited to change dynamically the threshold voltage of transistors on the basis of the gate status. Such an auxiliary circuit prepares the logic gate for fast switching while maintaining energy efficiency. If 200 aJ is the target total energy per operation consumption, a two input NAND (NOR) gate designed as described here shows a delay reduction between 20% (16%) and 40% (48%), with respect to previously proposed sub‐threshold approaches. Copyright 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Discrete impurity effects in terms of their statistical variations in number and position in the inversion and depletion region of a MOSFET, as the gate length is aggressively scaled, have recently been investigated as being a major cause of reliability degradation observed in intra-die and die-to-die threshold voltage variation on the same chip resulting in significant variation in saturation drive (on) current and transconductance degradation—two key metrics for benchmark performance of digital and analog integrated circuits. In this paper, in addition to random dopant fluctuations (RDF), the influence of random number and position of interface traps lying close to Si/SiO2 interface has been examined as it poses additional concerns because it leads to enhanced experimentally observed fluctuations in drain current and threshold voltage. In this context, the authors of this article present novel EMC based simulation study on trap induced random telegraph noise (RTN) responsible for statistical fluctuation pattern observed in threshold voltage, its standard deviation and drive current in saturation for 45 nm gate length technology node MOSFET device. From the observed simulation results and their analysis, it can be projected that with continued scaling in gate length and width, RTN effect will eventually supersede as a major reliability bottleneck over the already present RDF phenomenon. The fluctuation patterns observed by EMC simulation outcomes for both drain current and threshold voltage have been analyzed for the cases of single trap and two traps closely adjacent to one another lying in the proximity of the Si/SiO2 interface between source to drain region of the MOSFET and explained from analytical device physics perspectives.  相似文献   

15.
This paper presents a new compact model for the undoped, long‐channel double‐gate (DG) MOSFET under symmetrical operation. In particular, we propose a robust algorithm for computing the mobile charge density as an explicit function of the terminal voltages. It allows to greatly reduce the computation time without losing any accuracy. In order to validate the analytical model, we have also developed the 2D simulations of a DG MOSFET structure and performed both static and dynamic electrical simulations of the device. Comparisons with the 2D numerical simulations give evidence for the good behaviour and the accuracy of the model. Finally, we present the VHDL‐AMS code of the DG MOSFET model and related simulation results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the unique features exhibited by a novel double-gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) in which the front gate consists of two side gates to 1) electrically shield the channel region from any drain voltage variation and 2) act as an extremely shallow virtual extension to the source/drain are presented. This structure exhibits significantly reduced short-channel effects (SCEs) when compared with the conventional DG MOSFET. Using two-dimensional (2-D) and two-carrier device simulation, the improvement in device performance focusing on threshold voltage dependence on channel length, electric field in the channel, subthreshold swing, and hot carrier effects, all of which can affect the reliability of complementary metal oxide semiconductor (CMOS) devices, was investigated.  相似文献   

17.
These last years, the triple‐gate fin field‐effect transistor (FinFET) has appeared as attractive candidate to pursue the complementary metal‐oxide semiconductor technology roadmap for digital and analog applications. However, the development of analog applications requires models that properly describe the static and RF behaviors as well as the extrinsic parameters related to the three‐dimensional FinFET architecture, in order to establish adequate design strategies. We demonstrate the feasibility of the compact model developed for symmetric doped double‐gate metal‐oxide‐semiconductor field‐effect transistor (symmetric doped double‐gate MOSFET) to reproduce the experimental dc and RF behaviors for 40‐nm technology node Silicon‐on‐Insulator triple‐gate FinFETs. Extrinsic gate capacitances and access extrinsic resistances have been included in order to properly predict the transistor small‐signal behavior, the current gain, and the maximum available power gain cut‐off frequencies. Finally, the improvement of the FinFET RF characteristics by the reduction of the parasitics is addressed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A new band‐gap reference (BGR) circuit employing sub‐threshold current is proposed for low‐voltage operations. By employing the fraction of VBE and the sub‐threshold current source, the proposed BGR circuit with chip area of 0.029mm2 was fabricated in the standard 0.18µm CMOS triple‐well technology. It generates reference voltage of 170 mV with power consumption of 2.4µW at supply voltage of 1 V. The agreement between simulation and measurement shows that the variations of reference voltage are 1.3 mV for temperatures from ?20 to 100°C, and 1.1 mV per volt for supply voltage from 0.95 to 2.5 V, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a sub‐1 V CMOS bandgap voltage reference that accounts for the presence of direct tunneling‐induced gate current. This current increases exponentially with decreasing oxide thickness and is especially prevalent in traditional (non‐high‐κ/metal gate) ultra‐thin oxide CMOS technologies (tox < 3 nm), where it invalidates the simplifying design assumption of infinite gate resistance. The developed reference (average temperature coefficient, TC_AVG, of 22.5 ppm/°C) overcomes direct tunneling by employing circuit techniques that minimize, balance, and cancel its effects. It is compared to a thick‐oxide voltage reference (TC_AVG = 14.0 ppm/°C) as a means of demonstrating that ultra‐thin oxide MOSFETs can achieve performance similar to that of more expensive thick(er) oxide MOSFETs and that they can be used to design the analog component of a mixed‐signal system. The reference was investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Exact solution of two‐dimensional (2D) Poisson's equation for fully depleted double‐gate silicon‐on‐insulator metal‐oxide‐semiconductor field‐effect transistor is derived using three‐zone Green's function solution technique. Framework consists of consideration of source–drain junction curvature. 2D potential profile obtained forms the basis for estimation of threshold voltage. Temperature dependence of front surface potential distribution, back surface potential distribution and front‐gate threshold voltage are modeled using temperature sensitive parameters. Applying newly developed model, surface potential and threshold voltage sensitivities to gate oxide thickness have been comprehensively investigated. Device simulation is performed using ATLAS 2D (SILVACO, 4701 Patrick Henry Drive, Bldg. Santa Clara, CA 95054 USA) device simulator, and the results obtained are compared with the proposed 2D model. The model results are found to be in good agreement with the simulated data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号