首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
传感器网络节点定位精度的几何稀释分析   总被引:1,自引:1,他引:0  
通过分析时间到达(Time of Arrival,TOA)算法的定位原理,利用定位精度的几何稀释(Geometrical Dilution ofPrecision,GDOP),描述定位误差与锚节点群几何布局关系,并给出基于测距的算法中GDOP的计算方法。采用蒙特卡罗仿真方法,仿真次数100,设定锚节点的测距误差相同,取锚节点数为3、5,对基于锚节点群内点、外点的未知节点定位误差的归一化GDOP值和GDOP均值求解,结合质心算法原理,验证了自身节点定位精度与确定该节点位置的锚节点的几何关系密切相关,得到锚节点群内点定位精度高的结论。  相似文献   

2.
Considering energy consumption, hardware requirements, and the need of high localization accuracy, we proposed a power efficient range-free localization algorithm for wireless sensor networks. In the proposed algorithm, anchor node communicates to unknown nodes only one time by which anchor nodes inform about their coordinates to unknown nodes. By calculating hop-size of anchor nodes at unknown nodes one complete communication between anchor node and unknown node is eliminated which drastically reduce the energy consumption of nodes. Further, unknown node refines estimated hop-size for better estimation of distance from the anchor nodes. Moreover, using average hop-size of anchor nodes, unknown node calculates distance from all anchor nodes. To reduce error propagation, involved in solving for location of unknown node, a new procedure is adopted. Further, unknown node upgrades its location by exploiting the obtained information in solving the system of equations. In mathematical analysis we prove that proposed algorithm has lesser propagation error than distance vector-hop (DV-Hop) and other considered improved DV-Hop algorithms. Simulation experiments show that our proposed algorithm has better localization performance, and is more computationally efficient than DV-Hop and other compared improved DV-Hop algorithms.  相似文献   

3.
陈元元  姚佩阳 《通信技术》2009,42(10):63-65
无线传感器网络中,自身节点定位精度与确定该节点位置的锚节点的几何关系密切相关。分析了TOA算法的定位原理,引入了GDOP描述定位误差与锚节点群几何布局关系,并给出了基于测距的算法中GDOP的计算方法。通过场景分析,结合质心算法原理,提出锚节点群内点定位精度高,仿真验证了结论。  相似文献   

4.
Many improved DV-Hop localization algorithm have been proposed to enhance the localization accuracy of DV-Hop algorithm for wireless sensor networks. These proposed improvements of DV-Hop also have some drawbacks in terms of time and energy consumption. In this paper, we propose Novel DV-Hop localization algorithm that provides efficient localization with lesser communication cost without requiring additional hardware. The proposed algorithm completely eliminates communication from one of the steps by calculating hop-size at unknown nodes. It significantly reduces time and energy consumption, which is an important improvement over DV-Hop—based algorithms. The algorithm also uses improvement term to refine the hop-size of anchor nodes. Furthermore, unconstrained optimization is used to achieve better localization accuracy by minimizing the error terms (ranging error) in the estimated distance between anchor node and unknown node. Log-normal shadowing path loss model is used to simulate the algorithms in a more realistic environment. Simulation results show that the performance of our proposed algorithm is better when compared with DV-Hop algorithm and improved DV-Hop—based algorithms in all considered scenarios.  相似文献   

5.
传感器网络的粒子群优化定位算法   总被引:1,自引:0,他引:1  
陈志奎  司威 《通信技术》2011,44(1):102-103,108
无线传感器网络定位问题是一个基于不同距离或路径测量值的优化问题。由于传统的节点定位算法采用最小二乘法求解非线性方程组时很容易受到测距误差的影响,为了提高节点的定位精度,将粒子群优化算法引入到传感器网络定位中,提出了一种传感器网络的粒子群优化定位算法。该算法利用未知节点接收到的锚节点的距离信息,通过迭代方法搜索未知节点位置。仿真结果表明,该算法有效地抑制了测距误差累积对定位精度的影响,提高了节点的定位精度。  相似文献   

6.
In operating and managing wireless sensor networks (WSNs) and their applications, the high accuracy of localization and the low operating costs are considered the substantial and key issues. The literature is rich in algorithms for localized WSN devices in hostile and unreachable outdoor environment. Majority of the literature considered mobile anchor as one of the solutions in locating sensor nodes. In this situation, the critical issue is the trajectory planning. All algorithms supposed that the mobile anchor should travel following the shortest path to determine the positions of sensor nodes with minimum localization error. A localization algorithm, which is called efficient localization algorithm based path planning for mobile anchors (ELPMA), is proposed. ELPMA is based on a one-mobile anchor moving in adjustable circular trajectory to scan the target area. It considers that the received signal strength indicator is the ranging function to determine the distance between mobile anchor and sensor nodes. ELPMA supposed the mobile anchor starts the motion from the center of the target area. The travelling paths are planned in advance by ELPMA based on the distance measurements between the mobile anchor and the sensor nodes. Simulation results demonstrate that ELPMA has better performance compared to other algorithms based on static path. This performance was evident in the localization accuracy and trajectory planning.  相似文献   

7.
In wireless sensor networks (WSNs), many applications require sensor nodes to obtain their locations. Now, the main idea in most existing localization algorithms has been that a mobile anchor node (e.g., global positioning system‐equipped nodes) broadcasts its coordinates to help other unknown nodes to localize themselves while moving according to a specified trajectory. This method not only reduces the cost of WSNs but also gets high localization accuracy. In this case, a basic problem is that the path planning of the mobile anchor node should move along the trajectory to minimize the localization error and to localize the unknown nodes. In this paper, we propose a Localization algorithm with a Mobile Anchor node based on Trilateration (LMAT) in WSNs. LMAT algorithm uses a mobile anchor node to move according to trilateration trajectory in deployment area and broadcasts its current position periodically. Simulation results show that the performance of our LMAT algorithm is better than that of other similar algorithms. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Recent advancement in wireless sensor network has contributed greatly to the emerging of low‐cost, low‐powered sensor nodes. Even though deployment of large‐scale wireless sensor network became easier, as the power consumption rate of individual sensor nodes is restricted to prolong the battery lifetime of sensor nodes, hence the heavy computation capability is also restricted. Localization of an individual sensor node in a large‐scale geographic area is an integral part of collecting information captured by the sensor network. The Global Positioning System (GPS) is one of the most popular methods of localization of mobile terminals; however, the use of this technology in wireless sensor node greatly depletes battery life. Therefore, a novel idea is coined to use few GPS‐enabled sensor nodes, also known as anchor nodes, in the wireless sensor network in a well‐distributed manner. Distances between anchor nodes are measured, and various localization techniques utilize this information. A novel localization scheme Intersecting Chord‐Based Geometric Localization Scheme (ICBGLS) is proposed here, which loosely follows geometric constraint‐based algorithm. Simulation of the proposed scheme is carried out for various communication ranges, beacon broadcasting interval, and anchor node traversal techniques using Omnet++ framework along with INET framework. The performance of the proposed algorithm (ICBGLS), Ssu scheme, Xiao scheme, and Geometric Constraint‐Based (GCB) scheme is evaluated, and the result shows the fact that the proposed algorithm outperforms the existing localization algorithms in terms of average localization error. The proposed algorithm is executed in a real‐time indoor environment using Arduino Uno R3 and shows a significant reduction in average localization time than GCB scheme and similar to that of the SSU scheme and Xiao scheme.  相似文献   

9.
针对无线传感器网络(Wireless Sensor Networks,WSN)的低成本、低耗能以及准确定位的需求,提出了一种射频干涉与测量多普勒频偏相结合的节点定位方法。该方法中移动锚节点通过2次交叉运动,产生多普勒效应并与静止锚节点形成射频干涉场;未知节点通过测量自身低频干涉信号的瞬时频率的变化规律,获得定位相关信息进而实现节点定位。仿真实验结果表明该方法可以实现预期的定位,且定位精度较高;同时,定位算法简单,运算量小,能耗小,尤其适用于大范围分布的大量节点进行定位。  相似文献   

10.
Localization is an essential and major issue for underwater acoustic sensor networks (UASNs). Almost all the applications in UASNs are closely related to the locations of sensors. In this paper, we propose a multi‐anchor nodes collaborative localization (MANCL) algorithm, a three‐dimensional (3D) localization scheme using anchor nodes and upgrade anchor nodes within two hops for UASNs. The MANCL algorithm divides the whole localization process into four sub‐processes: unknown node localization process, iterative location estimation process, improved 3D Euclidean distance estimation process, and 3D DV‐hop distance estimation process based on two‐hop anchor nodes. In the third sub‐process, we propose a communication mechanism and a vote mechanism to determine the temporary coordinates of unknown nodes. In the fourth sub‐process, we use two‐hop anchor nodes to help localize unknown nodes. We also evaluate and compare the proposed algorithm with a large‐scale localization algorithm through simulations. Results show that the proposed MANCL algorithm can perform better with regard to localization ratio, average localization error, and energy consumption in UASNs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In emerging sensor network applications, localization in wireless sensor network is a recent area of research. Requirement of its applications and availability of resources need feasible localization algorithm with lower cost and higher accuracy. In this paper, we propose an Advanced DV-Hop localization algorithm that reduces the localization error without requiring additional hardware and computational costs. The proposed algorithm uses the hop-size of the anchor (which knows its location) node, from which unknown node measures the distance. In the third step of Advanced DV-Hop algorithm, inherent error in the estimated distance between anchor and unknown node is reduced. To improve the localization accuracy, we use weighted least square algorithm. Furthermore, location of unknown nodes is refined by using extraneous information obtained by solving the equations. By mathematical analysis, we prove that Advanced DV-Hop algorithm has lesser correction factor in the distance between anchor and the unknown node compared with DV-Hop algorithm, improved DV-Hop algorithm (Chen et al. 2008) and improved DV-Hop algorithm (Chen et al. in IEICE Trans Fundam E91-A(8), 2008), which is cause of better location accuracy. Simulation results show that the performance of our proposed algorithm is superior to DV-Hop algorithm and improved DV-Hop algorithms in all considered scenarios.  相似文献   

12.
基于几何学的无线传感器网络定位算法   总被引:1,自引:0,他引:1  
刘影 《光电子.激光》2010,(10):1435-1438
提出一种基于几何学的无线传感器网络(WSN)定位算法。把网络区域中的节点分为锚节点和未知节点,假设在定位空间中有n个锚节点,由于受到几何学的限制,实际可行的锚节点序列是有限的,因此利用一种几何方法判断锚节点间的位置关系,从而选取最优的锚节点序列,能够更精确地确定未知节点的位置,并且分析了待定位节点的邻居锚节点数量对定位精度的影响。仿真结果表明,与已有的APS(Ad-Hoc positioning system)定位算法相比,该算法可有效地降低平均定位误差和提高定位覆盖度。  相似文献   

13.
定位信息是在无线传感器网络许多应用中不可缺少的,并且越来越重要。DV-Hop是一种典型的无需测距的定位算法。通过对DV-Hop算法的理论分析,找出其产生误差的主要原因,提出了一种改进的DV-Hop定位算法。增加锚节点数量及减少每条平均距离误差,有效提高节点定位精度。不用额外的硬件支持能够得到更接近实际位置的估算位置。仿真结果表明,提出的改进算法性能比原来的算法显著提升。  相似文献   

14.
为了提高无线传感器网络节点的定位精确度,给出一种基于临近锚节点修正(CAAN)的具有噪声的基于密度的聚类(DBSCAN)加权定位算法。首先,在未知节点通信范围内的锚节点中选择三个构成三角形,证明当未知节点处在此三角形外接圆圆心位置时定位误差最小,然后据此选择合适的锚节点,结合滤波后的接收信号强度指示(RSSI)值进行定位计算,并利用DBSCAN聚类算法剔除误差较大的值。其次,把聚类后所得簇的核心点个数当作权值,采用加权定位算法得到未知节点的初始坐标。最后,计算锚节点坐标与初始坐标间的距离,选择临近的锚节点修正初始坐标,使最终的定位结果更加精确。仿真结果表明:相比于加权质心定位算法和基于RSSI测距滤波优化的加权质心定位算法,所给算法的定位精确度分别提高了69.55%和38.64%。  相似文献   

15.
毛玉明 《电讯技术》2016,56(8):850-855
为使随机部署的三维无线传感器网络中锚节点的分布更加合理,提高未知节点定位精度,针对锚节点部署进行优化。通过构建弹簧系统模型,将锚节点抽象为通过弹簧相连接的点,使部分锚节点在合力作用下进行伸缩运动,达到提高网络性能的目的。当锚节点部署优化完成后,应用近似三角形内点测试( APIT)和DV-HOP( Distance Vector-hop)算法测试优化前后的节点定位精度。仿真结果表明,三维空间下的锚节点经过弹簧系统模型的部署优化后,锚节点网络覆盖率和定位覆盖率均得到了提高,网络平均连通度有所提升,且定位精度显著提高。  相似文献   

16.
移动传感器网络非均匀事件区域节点部署优化   总被引:2,自引:0,他引:2       下载免费PDF全文
刘军  程良伦  王建华  王涛 《电子学报》2015,43(12):2402-2407
针对移动传感器网络中热点事件监测场景,研究传感器节点的快速优化部署策略.首先假定事件随机产生,针对事件优先模型及节点感知误差函数推导基于Voronoi剖分时感知误差最小,然后定义节点有效覆盖权值,证明了当所有节点有效覆盖权值一致时,整个网络覆盖效能将达到最大.结合虚拟力及节点有效覆盖权提出一种分布式优化部署算法SDOA(Sparse Deployment Optimization Algorithm),其在保证覆盖能效最大化时保证网络连通性.最后仿真比较了本文提出部署策略能够快速有效实现对热点区域部署,并保证较高的覆盖效能.  相似文献   

17.
In this letter, we propose a one‐way ranging algorithm that is based on wireless synchronization with measured timestamps and clock frequency offsets. In our proposed algorithm, an active mobile node initiates a ranging procedure by transmitting a ranging frame, and the anchor nodes report their timestamps for the received ranging frame to a reference anchor node. The synchronization of a pair of nodes is provided with instantaneous time information, and the corresponding difference of distances can be calculated.  相似文献   

18.
邬春明  宋强欢  杨涛 《电视技术》2016,40(3):98-102
无线传感器网络中节点间通信容易受到环境因素和传输衰减因素等的影响,从而造成节点的定位不准确.为减小节点定位误差,在分布式多维定标算法基础上提出了改进的WMDS-MAP(P)算法.采用加权算法求出每个锚节点的环境影响参数和传输衰减参数对,并在构建局部空间的节点矩阵时考虑这两个因素;采用最小二乘算法选出锚节点中最优的环境影响参数和传输衰减参数对,从而使节点间的一跳距离估计值更逼近真实值.仿真结果显示改进的算法相对于经典的MDS-MAP(P)算法节点平均定位误差减少了17%左右,可以有效提高节点的定位精度.  相似文献   

19.
Kaushik  Abhinesh  Lobiyal  D. K.  Kumar  Shrawan 《Wireless Networks》2021,27(3):1801-1819

DV-Hop, a range-free localization algorithm, has been one of the most popular localization algorithm. It is easy and inexpensive to implement. Therefore, in the literature, many improved variants of this algorithm exist. However, poor location accuracy and higher power consumption by DV-Hop algorithm always open new avenues for research on this algorithm and makes it a favorite among the researchers. In this paper, we have proposed an Improved 3-Dimensional DV-Hop algorithm based on the information of nearby nodes (I3D-DVLAIN). In the algorithm, by calculating hopsize at the unknown nodes, we eliminate one communication among the nodes, which reduces power consumption in the network. The hopsize calculation and location estimation is done by using only the nearby anchor nodes, which minimizes the network usage and decreases the computational effort. For the selection of nearby anchor nodes, we introduce a new method. Further, for localization, a novel method is used for solving the system of distance equations that restricts propagation of inherent error in the distance and increases localization accuracy. Furthermore, by mathematically analyzing the propagation of error in solving the system of equations, we prove the superiority of I3D-DVLAIN over other compared algorithms. The results obtained through simulation and complexity analysis of the computation and communication further strengthens our observations about the superiority of the proposed algorithm.

  相似文献   

20.
马淑丽  赵建平 《通信技术》2015,48(7):840-844
无线传感器网络中基于无需测距的节点定位算法定位精度不高,一般应用在粗精度定位中。为了提高基于无需测距的DV-Hop算法定位精度,利用最小均方差准则改进算法,通过修改指数值精化平均每一跳距离,提出不同通信半径、不同锚节点覆盖率下的最佳指数值概念,并应用在一种锚节点均匀分布环境中,进一步提高定位精度。MTLAB仿真结果表明,在最佳指数值下,改进的算法在不同锚节点覆盖率、不同通信半径下能提高定位精度,同时不会增加节点能量消耗与硬件成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号