首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a family of approximation schemes, which we refer to as second‐order maximum‐entropy (max‐ent) approximation schemes, that extends the first‐order local max‐ent approximation schemes to second‐order consistency. This method retains the fundamental properties of first‐order max‐ent schemes, namely the shape functions are smooth, non‐negative, and satisfy a weak Kronecker‐delta property at the boundary. This last property makes the imposition of essential boundary conditions in the numerical solution of partial differential equations trivial. The evaluation of the shape functions is not explicit, but it is very efficient and robust. To our knowledge, the proposed method is the first higher‐order scheme for function approximation from unstructured data in arbitrary dimensions with non‐negative shape functions. As a consequence, the approximants exhibit variation diminishing properties, as well as an excellent behavior in structural vibrations problems as compared with the Lagrange finite elements, MLS‐based meshfree methods and even B‐Spline approximations, as shown through numerical experiments. When compared with usual MLS‐based second‐order meshfree methods, the shape functions presented here are much easier to integrate in a Galerkin approach, as illustrated by the standard benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a two‐dimensional displacement‐based meshfree‐enriched FEM (ME‐FEM) is presented for the linear analysis of compressible and near‐incompressible planar elasticity. The ME‐FEM element is established by injecting a first‐order convex meshfree approximation into a low‐order finite element with an additional node. The convex meshfree approximation is constructed using the generalized meshfree approximation method and it possesses the Kronecker‐delta property on the element boundaries. The gradient matrix of ME‐FEM element satisfies the integration constraint for nodal integration and the resultant ME‐FEM formulation is shown to pass the constant stress test for the compressible media. The ME‐FEM interpolation is an element‐wise meshfree interpolation and is proven to be discrete divergence‐free in the incompressible limit. To prevent possible pressure oscillation in the near‐incompressible problems, an area‐weighted strain smoothing scheme incorporated with the divergence‐free ME‐FEM interpolation is introduced to provide the smoothing on strains and pressure. With this smoothed strain field, the discrete equations are derived based on a modified Hu–Washizu variational principle. Several numerical examples are presented to demonstrate the effectiveness of the proposed method for the compressible and near‐incompressible problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The element-free Galerkin (EFG) method is a promising method for solving many engineering problems. Because the shape functions of the EFG method obtained by the moving least-squares (MLS) approximation, generally, do not satisfy the Kronecker delta property, special techniques are required to impose the essential boundary conditions. In this paper, it is proved that the MLS shape functions satisfy the Kronecker delta property when the number of nodes in the support domain is equal to the number of the basis functions. According to this, a local Kronecker delta property, which is satisfying the Kronecker delta property only at boundary nodes, can be obtained in one- and two-dimension. This local Kronecker delta property is an inherent property of the one-dimensional MLS shape functions and can be obtained for the two-dimensional MLS shape functions by reducing the influence domain of each boundary node to weaken the influence between them. The local Kronecker delta property provides the feasibility of directly imposing the essential boundary conditions for the EFG method. Four numerical examples are computed to verify this feasibility. The coincidence of the numerical results obtained by the direct method and Lagrange multiplier method shows the feasibility of the direct method.  相似文献   

4.
In this paper, an overview of the construction of meshfree basis functions is presented, with particular emphasis on moving least‐squares approximants, natural neighbour‐based polygonal interpolants, and entropy approximants. The use of information‐theoretic variational principles to derive approximation schemes is a recent development. In this setting, data approximation is viewed as an inductive inference problem, with the basis functions being synonymous with a discrete probability distribution and the polynomial reproducing conditions acting as the linear constraints. The maximization (minimization) of the Shannon–Jaynes entropy functional (relative entropy functional) is used to unify the construction of globally and locally supported convex approximation schemes. A JAVA applet is used to visualize the meshfree basis functions, and comparisons and links between different meshfree approximation schemes are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Meshfree approximation, such as Moving Least Square (MLS) and Reproducing Kernel (RK) approximations, possess intrinsic non‐local properties. These non‐local properties of meshfree approximations are exploited to incorporate an intrinsic length scale which regularizes problems with material instabilities. The discrete equilibrium equation is obtained by employing an assumed strain method in the Galerkin approximation. This proposed method is essentially uniformly non‐local, but in contrast to non‐local finite elements, no kinematic modes are observed. Gradient‐type regularization can also be modelled by this method without the additional boundary conditions and other complications of the conventional gradient methods. Numerical examples show that the displacement‐based MLS/RK formulation (1‐level regularization) is sufficient to remedy mesh‐sensitivity in damage‐induced strain localization. For strain localization associated with plasticity, a two‐level MLS/RK regularization in displacement and strain shown to be effective. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Since meshless methods have been introduced to alleviate the difficulties arising in conventional finite element method, many papers on applications of meshless methods to boundary element method have been published. However, most of these papers use moving least squares approximation functions that have difficulties in prescribing essential boundary conditions. Recently, in order to strengthen the effectiveness of meshless methods, Oh et al. developed meshfree reproducing polynomial particle (RPP) shape functions, patchwise RPP and reproducing singularity particle (RSP) shape functions with use of flat-top partition of unity. All of these approximation functions satisfy the Kronecker delta property. In this paper, we report that meshfree RPP shape functions, patchwise RPP shape functions, and patchwise RSP shape functions effectively handle boundary integral equations with (or without) domain singularities.  相似文献   

7.
A meshfree approach for plate buckling/post-buckling problems in the case of uniaxial thrust is presented. A geometrical nonlinear formulation is employed using reproducing kernel approximation and stabilized conforming nodal integration. The bending components are represented by Mindlin–Reissner plate theory. The formulation has a locking-free property in imposing the Kirchhoff mode reproducing condition. In addition, in-plane deformation components are approximated by reproducing kernels. The deformation components are coupled to solve the general plate bending problem with geometrical non-linearity. In buckling/post-buckling analysis of plates, the in-plane displacement of the edges in their perpendicular directions is assumed to be uniform by considering the continuity of plating, and periodic boundary conditions are considered in assuming the periodicity of structures. In such boundary condition enforcements, some node displacements/rotations should be synchronized with others. However, the enforcements introduce difficulties in the meshfree approach because the reproducing kernel function does not have the so-called Kronecker delta property. In this paper, the multiple point constraint technique is introduced to treat such boundary conditions as well as the essential boundary conditions. Numerical studies are performed to examine the accuracy of the multiple point constraint enforcements. As numerical examples, buckling/post-buckling analyses of a rectangular plate and stiffened plate structure are presented to validate the proposed approach.  相似文献   

8.
A general formulation for developing reproducing kernel (RK) interpolation is presented. This is based on the coupling of a primitive function and an enrichment function. The primitive function introduces discrete Kronecker delta properties, while the enrichment function constitutes reproducing conditions. A necessary condition for obtaining a RK interpolation function is an orthogonality condition between the vector of enrichment functions and the vector of shifted monomial functions at the discrete points. A normalized kernel function with relative small support is employed as the primitive function. This approach does not employ a finite element shape function and therefore the interpolation function can be arbitrarily smooth. To maintain the convergence properties of the original RK approximation, a mixed interpolation is introduced. A rigorous error analysis is provided for the proposed method. Optimal order error estimates are shown for the meshfree interpolation in any Sobolev norms. Optimal order convergence is maintained when the proposed method is employed to solve one‐dimensional boundary value problems. Numerical experiments are done demonstrating the theoretical error estimates. The performance of the method is illustrated in several sample problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Element‐free Galerkin (EFG) methods are based on a moving least‐squares (MLS) approximation, which has the property that shape functions do not satisfy the Kronecker delta function at nodal locations, and for this reason imposition of essential boundary conditions is difficult. In this paper, the relationship between corrected collocation and Lagrange multiplier method is revealed, and a new strategy that is accurate and very simple for enforcement of essential boundary conditions is presented. The accuracy and implementation of this new technique is illustrated for one‐dimensional elasticity and two‐dimensional potential field problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
An error‐reproducing and interpolating kernel method (ERIKM), which is a novel and improved form of the error‐reproducing kernel method (ERKM) with the nodal interpolation property, is proposed. The ERKM is a non‐uniform rational B‐splines (NURBS)‐based mesh‐free approximation scheme recently proposed by Shaw and Roy (Comput. Mech. 2007; 40 (1):127–148). The ERKM is based on an initial approximation of the target function and its derivatives by NURBS basis functions. The errors in the NURBS approximation and its derivatives are then reproduced via a family of non‐NURBS basis functions. The non‐NURBS basis functions are constructed using a polynomial reproduction condition and added to the NURBS approximation obtained in the first step. In the ERKM, the interpolating property at the boundary is achieved by repeating the knot (open knot vector). However, for most problems of practical interest, employing NURBS with open knots is not possible because of the complex geometry of the domain, and consequently ERKM shape functions turn out to be non‐interpolating. In ERIKM, the error functions are obtained through localized Kriging based on a minimization of the squared variance of the estimate with the reproduction property as a constraint. Interpolating error functions so obtained are then added to the NURBS approximant. While enriching the ERKM with the interpolation property, the ERIKM naturally possesses all the desirable features of the ERKM, such as insensitivity to the support size and ability to reproduce sharp layers. The proposed ERIKM is finally applied to obtain strong and weak solutions for a class of linear and non‐linear boundary value problems of engineering interest. These illustrations help to bring out the relative numerical advantages and accuracy of the new method to some extent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The hybrid boundary node method (HBNM) retains the meshless attribute of the moving least squares (MLS) approximation and the reduced dimensionality advantages of the boundary element method. However, the HBNM inherits the deficiency of the MLS approximation, in which shape functions lack the delta function property. Thus in the HBNM, boundary conditions are implemented after they are transformed into their approximations on the boundary nodes with the MLS scheme.This paper combines the hybrid displacement variational formulation and the radial basis point interpolation to develop a direct boundary-type meshless method, the hybrid radial boundary node method (HRBNM) for two-dimensional potential problems. The HRBNM is truly meshless, i.e. absolutely no elements are required either for interpolation or for integration. The radial basis point interpolation is used to construct shape functions with delta function property. So unlike the HBNM, the HRBNM is a direct numerical method in which the basic unknown quantity is the real solution of nodal variables, and boundary conditions can be applied directly and easily, which leads to greater computational precision. Some selected numerical tests illustrate the efficiency of the method proposed.  相似文献   

13.
This paper proposes a new structural topology optimization method using a dual‐level point‐wise density approximant and the meshless Galerkin weak‐forms, totally based on a set of arbitrarily scattered field nodes to discretize the design domain. The moving least squares (MLS) method is used to construct shape functions with compactly supported weight functions, to achieve meshless approximations of system state equations. The MLS shape function with the zero‐order consistency will degenerate to the well‐known ‘Shepard function’, while the MLS shape function with the first‐order consistency refers to the widely studied ‘MLS shape function’. The Shepard function is then applied to construct a physically meaningful dual‐level density approximant, because of its non‐negative and range‐restricted properties. First, in terms of the original set of nodal density variables, this study develops a nonlocal nodal density approximant with enhanced smoothness by incorporating the Shepard function into the problem formulation. The density at any node can be evaluated according to the density variables located inside the influence domain of the current node. Second, in the numerical implementation, we present a point‐wise density interpolant via the Shepard function method. The density of any computational point is determined by the surrounding nodal densities within the influence domain of the concerned point. According to a set of generic design variables scattered at field nodes, an alternative solid isotropic material with penalization model is thus established through the proposed dual‐level density approximant. The Lagrangian multiplier method is included to enforce the essential boundary conditions because of the lack of the Kronecker delta function property of MLS meshless shape functions. Two benchmark numerical examples are employed to demonstrate the effectiveness of the proposed method, in particular its applicability in eliminating numerical instabilities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A novel way is proposed to fulfill Kronecker delta condition in moving least squares (MLS) approximation along the essential boundary. In the proposed scheme, the original MLS weight is modified to boundary interpolatable (BI) weight based on the observation that the support of weight function is exactly the same as the support of MLS nodal shape function. The BI weight is zero along the boundary edges except the edges containing the nodal point associated with the concerned weight. In order to construct the BI weight from the original weight, concept of edge distance function is introduced, and the BI weight construction procedure is presented in detail. Furthermore, it is explained theoretically why the MLS nodal shape functions obtained by BI weights satisfy Kronecker delta condition along the boundary edges. To identify the validity and usefulness of the proposed BI MLS approximation scheme through numerical tests, the scheme is applied to the model problems with rectangular domain and complex shaped domain. Through the tests, theoretical prediction is identified numerically, and it is confirmed that one can handle the essential and natural boundary conditions through the proposed BI MLS scheme in exactly the same manner used in traditional finite element methods.  相似文献   

15.
We present a one‐parameter family of approximation schemes, which we refer to as local maximum‐entropy approximation schemes, that bridges continuously two important limits: Delaunay triangulation and maximum‐entropy (max‐ent) statistical inference. Local max‐ent approximation schemes represent a compromise—in the sense of Pareto optimality—between the competing objectives of unbiased statistical inference from the nodal data and the definition of local shape functions of least width. Local max‐ent approximation schemes are entirely defined by the node set and the domain of analysis, and the shape functions are positive, interpolate affine functions exactly, and have a weak Kronecker‐delta property at the boundary. Local max‐ent approximation may be regarded as a regularization, or thermalization, of Delaunay triangulation which effectively resolves the degenerate cases resulting from the lack or uniqueness of the triangulation. Local max‐ent approximation schemes can be taken as a convenient basis for the numerical solution of PDEs in the style of meshfree Galerkin methods. In test cases characterized by smooth solutions we find that the accuracy of local max‐ent approximation schemes is vastly superior to that of finite elements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, a new implementation of the boundary face method (BFM) is presented and developed for solving 3D potential problems. The BFM is implemented directly based on the boundary representation data structure for geometry modeling to eliminate geometry errors. This study combines the BFM with Kriging interpolation method and the corresponding formulae are derived. The Kriging interpolation is applied instead of the traditional moving least squares (MLS) approximation to overcome the lack of Kronecker delta function property, then essential boundary conditions can be imposed directly and easily. Several numerical examples with different geometry and boundary conditions are presented to illustrate the performance of the present method. The comparisons of accuracy between MLS approximation and Kriging interpolation are studied.  相似文献   

17.
In this paper, we obtain explicit expressions to evaluate the derivatives of maximum‐entropy (max‐ent) basis function on the boundary of a convex domain. In the max‐ent formulation, the basis functions are obtained by maximizing a concave functional subjected to linear constraints (reproducing conditions). In doing so, it is found that the Lagrange multipliers blow up when x ∈ ?Ω, and the expressions for the derivatives of the max‐ent basis functions in Ω are of an indeterminate form for points on ?Ω. We appeal to l'Hôpital's rule to derive expressions to determine the derivatives of the basis functions. We consider the Shannon entropy functional and the relative entropy functional with different choices of the prior weight function. The first‐order derivatives of all basis functions are bounded. In contrast, on an irregular grid with a certain nodal spacing, some of the second derivatives of the basis functions are unbounded on the boundary. Necessary and sufficient conditions on the priors to obtain bounded Lagrange multipliers are established. Optimal convergence rates for fourth‐order problems are demonstrated for a Galerkin approach with a quadratically complete partition‐of‐unity enriched max‐ent approximation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, we first discuss the moving least‐square approximation (MLS) method. In some cases, the MLS may form an ill‐conditioned system of equations so that the solution cannot be correctly obtained. Hence, in this paper, we propose an improved moving least‐square approximation (IMLS) method. In the IMLS method, the orthogonal function system with a weight function is used as the basis function. The IMLS has higher computational efficiency and precision than the MLS, and will not lead to an ill‐conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation method, a direct meshless BIE method, the boundary element‐free method (BEFM), for two‐dimensional elasticity is presented. Compared to other meshless BIE methods, BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be applied easily; hence, it has higher computational precision. For demonstration purpose, selected numerical examples are given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A novel space–time meshfree collocation method (STMCM) for solving systems of non‐linear ordinary and partial differential equations by a consistent discretization in both space and time is proposed as an alternative to established mesh‐based methods. The STMCM belongs to the class of truly meshfree methods, i.e. the methods that do not have any underlying mesh, but work on a set of nodes only without any a priori node‐to‐node connectivity. Instead, the neighbouring information is established on‐the‐fly. The STMCM is constructed using the Interpolating Moving Least‐squares technique, which allows a simplified implementation of boundary conditions due to fulfillment of the Kronecker delta property by the kernel functions, which is not the case for the major part of other meshfree methods. The method is validated by several examples ranging from interpolation problems to the solution of PDEs, whereas the STMCM solutions are compared with either analytical or reference ones. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In topology optimization, it is customary to use reciprocal‐like approximations, which result in monotonically decreasing approximate objective functions. In this paper, we demonstrate that efficient quadratic approximations for topology optimization can also be derived, if the approximate Hessian terms are chosen with care. To demonstrate this, we construct a dual SAO algorithm for topology optimization based on a strictly convex, diagonal quadratic approximation to the objective function. Although the approximation is purely quadratic, it does contain essential elements of reciprocal‐like approximations: for self‐adjoint problems, our approximation is identical to the quadratic or second‐order Taylor series approximation to the exponential approximation. We present both a single‐point and a two‐point variant of the new quadratic approximation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号