首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In cellular networks, blocking occurs when a base station has no free channel to allocate to a mobile user. One distinguishes between two kinds of blocking, the first is called new call blocking and refers to blocking of new calls, the second is called handoff blocking and refers to blocking of ongoing calls due to the mobility of the users. In this paper, we first provide explicit analytic expressions for the two kinds of blocking probabilities in two asymptotic regimes, i.e., for very slow mobile users and for very fast mobile users, and show the fundamental differences between these blocking probabilities. Next, an approximation is introduced in order to capture the system behavior for moderate mobility. The approximation is based on the idea of isolating a set of cells and having a simplifying assumption regarding the handoff traffic into this set of cells, while keeping the exact behavior of the traffic between cells in the set. It is shown that a group of 3 cells is enough to capture the difference between the blocking probabilities of handoff call attempts and new call attempts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We consider a hierarchical cellular system, which consists of a macrolayer and a microlayer. The macrocells accommodate fast mobile users. However, if we direct too many mobile users to the macrocells, the system capacity is low. On the other hand, the microcells are designed to increase capacity, but they cause a large number of handoffs. The aim is to maximize the system capacity while keeping the amount of handoff small. We minimize the handoff rate by a fuzzy layer selection algorithm, which makes use of the past cell dwell times of a user and the channel occupancy of the target cell. To maximize the capacity, we propose a distributed channel assignment algorithm to dynamically allocate the channels among the two layers. Exchange of information is allowed between neighboring macrocells. The state of channel assignment in a macrocell and its interfering cells are tabulated in a channel allocation table, which provides all information required in the integrated resource allocation scheme. The performance is evaluated by simulation and compared with the popular layer selection scheme known as the threshold method  相似文献   

3.
We present an analytic model for the performance evaluation of hierarchical cellular systems, which can provide multiple routes for calls through overflow from one cell layer to another. Our model allows the case where both the call time and the cell residence time are generally distributed. Based on the characterization of the call time by a hyper-Erlang distribution, the Laplace transform of channel occupancy time distribution for each call type (new call, handoff call, and overflow call) is derived as a function of the Laplace transform of cell residence time. In particular, overflow calls are modeled by using a renewal process. Performance measures are derived based on the product form solution of a loss system with capacity limitation. Numerical results show that the distribution type of call time and/or cell residence time has influence on the performance measure and that the exponential case may underestimate the system performance.  相似文献   

4.
Fuzzy layer selection method in hierarchical cellular systems   总被引:4,自引:0,他引:4  
Hierarchical cellular systems are proposed to accommodate mobile users of different speeds. While the microlayer serves the slow users, the macrolayer serves the fast users. After a handoff request is initiated, we must make a decision determining whether it should go to the micro or macrocell. In this paper, this problem is tackled by making use of the past cell dwell times and occupancies in the target micro and macrocell. We want those mobile users with high velocity to join the macrolayer. It is also desirable to select the target cell which has lower occupancy in order to prevent call blocking. These heuristics are incorporated in a fuzzy layer selection (FLS) algorithm, which is devised in terms of fuzzy set and fuzzy logic. The performance is compared to the popular threshold method in the literature by simulation  相似文献   

5.
In this paper, a bandwidth-efficient handoff strategy is proposed and analyzed for hierarchical cellular systems. Mobile subscribers are divided into two classes, i.e., low- and high-mobility subscribers. In our bandwidth-efficient handoff strategy, each of the originating and handoff calls of both slow and fast mobile subscribers first tries to get a channel in a microcell. Macrocells are overlaid over the microcells to handle overflowed calls. A call overflowed into a macrocell requests a take-back to the new microcell at each border crossing of the microcells. The request will be accommodated by the target microcell if there is any idle traffic channel in the cell. An analytical model is developed, and the most important performance measures such as the blocking probability of originating calls and the forced termination probability of calls are evaluated. It is shown through extensive comparisons with other candidate handoff strategies that if the total traffic load of the system is not very heavy, our scheme has the best bandwidth efficiency and can provide better quality of service for mobile subscribers without bringing too much processing expense to the system  相似文献   

6.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

7.
In this paper, we study a cellular mobile communications network with multiple cells and multiple classes of calls. The different classes of calls have different call holding times and residence time distributions. We consider a protocol mechanism under which a blocked call in a cell is either disconnected from the network or is deemed as a handoff call in a neighboring cell. Under this protocol, we prove that the stationary distribution of this cellular mobile network has a product form. This allows us to derive explicit expressions for handoff rates of each class of calls from one cell to another and the disconnecting probabilities for each class of new and handoff calls. Our numerical results show how these measures depend on the mobility of the mobile terminals in each cell and on the numbers of reserved channels.  相似文献   

8.
We consider hierarchical cellular code-division multiple-access networks supporting soft handoff, where users with different mobility are assigned to different layers, i.e., microcells in the lower layer are used to carry slow users, whereas macrocells in the upper layer are for fast users, and handoff queues are provided for handoff calls that cannot obtain the required channel immediately, so that forced termination probability can be reduced. According to whether handoff queues are provided in microcells and/or macrocells, four different call admission control schemes are proposed and studied. We derive the mathematical model of the considered system with multidimensional birth-death process and utilize Gauss-Seidel iterative method to find the steady-state probability distribution and thus the performance measures of interest: new call blocking probability, handoff failure probability, and forced termination probability. Analytical results show that providing handoff queues in both microcells and macrocells can achieve largest performance improvement. Furthermore, handoff queue size greater than a threshold is shown to have little effect on performance measures of interest. Last but not least, the studied two-tier system is compared with a one-tier counterpart. It is shown that the two-tier system performs better in terms of average number of handoffs per fast call.  相似文献   

9.
The traffic performance of integrated 3G wide-band code division multiple access (WCDMA) and GSM/GPRS network is evaluated. This type of network links two cellular radio systems which have different set of frequency bands and the same coverage size. The base station of 3G WCDMA is installed on an existing GSM/GPRS site. Dual-mode mobile terminals use handoff to establish calls on the better system. The soft handoff or inter-frequency hard handoff occurs when mobile terminals of 3G WCDMA or GSM/GPRS move between two adjacent cells, respectively. The inter-system hard handoffs are used between 3G WCDMA and GSM/GPRS systems. The data rate conversions between different systems, soft handoff region size, multiple data rate multimedia services, and the effect of the mobile terminal mobility on the user mean dwell time in each system are considered in the study. The simulation results demonstrate that a great traffic performance improvement on the complementary use of 3G WCDMA and GSM/GPRS cellular radio networks compared with the use of GSM/GPRS cellular radio networks. When high-data rate transmission is chosen for low-mobility subscribers, both the handoff failure probability, and carried traffic rates increase with the new call generation rate. However, both rates decrease conversely with the increasing new call generation rate as soon as the new call generation rate exceeds a critical value. This causes the integrated networks saturation. The higher mean speed for the mobile terminals produces lower new call blocking probabilities and total carried traffic. The new call blocking probabilities and total carried traffic increase with the size of the soft handoff region.  相似文献   

10.
In this paper a dynamic channel reservation and call admission control scheme is proposed to provide QoS guarantees in a mobile wireless network using the concept of influence curve. The basic idea behind the proposed scheme is that a moving user, in addition to its requirements in the current cell, exerts some influence on the channel allocation in neighboring cells. Such an influence is related to the moving pattern of the users and is calculated statistically. Furthermore we developed a general analytical model to calculate the corresponding blocking probabilities for wireless networks with multiple platforms, which removes the commonly used assumption that new calls and handoff calls have same channel holding time. The numerical results demonstrate that our scheme outperforms traditional channel reservation schemes and can effectively adapt to the real time network conditions.  相似文献   

11.
Next generation mobile networks are expected to provide seamless personal mobile communication and quality-of-service (QoS) guaranteed IP-based multimedia services. Providing seamless communication in mobile networks means that the networks have to be able to provide not only fast but also lossless handoff. This paper presents a two-layer downlink queuing model and a scheduling mechanism for providing lossless handoff and QoS in mobile networks, which exploit IP as a transport technology for transferring datagrams between base stations and the high-speed downlink packet access (HSDPA) at the radio layer. In order to reduce handoff packet dropping rate at the radio layer and packet forwarding rate at the IP layer and provide high system performance, e.g., downlink throughput, scheduling algorithms are performed at both IP and radio layers, which exploit handoff priority scheduling principles and take into account buffer occupancy and channel conditions. Performance results obtained by computer simulation show that, by exploiting the downlink queuing model and scheduling algorithms, the system is able to provide low handoff packet dropping rate, low packet forwarding rate, and high downlink throughput.  相似文献   

12.
In future personal communications networks (PCNs) supporting network-wide handoffs, new and handoff requests will compete for connection resources in both the mobile and backbone networks. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The previously proposed guard channel scheme for radio channel allocation in cellular networks reduces handoff call blocking probability substantially at the expense of slight increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. While the effectiveness of a fixed number of guard channels has been demonstrated under stationary traffic conditions, with nonstationary call arrival rates in a practical system, the achieved handoff call blocking probability may deviate significantly from the desired objective. We propose a novel dynamic guard channel scheme which adapts the number of guard channels in each cell according to the current estimate of the handoff call arrival rate derived from the current number of ongoing calls in neighboring cells and the mobility pattern, so as to keep the handoff call blocking probability close to the targeted objective while constraining the new call blocking probability to be below a given level. The proposed scheme is applicable to channel allocation over cellular mobile networks, and is extended to bandwidth allocation over the backbone network to enable a unified approach to prioritized call admission control over the ATM-based PCN  相似文献   

13.
Many wireless access systems have been developed recently to support users mobility and ubiquitous communication. Nevertheless, these systems always work independently and cannot simultaneously serve users properly. In this paper, we aim to integrate IPv6-based wireless access systems and propose a coordinated call admission control mechanism to utilize the total bandwidth of these systems to minimize the call blocking probabilities, especially the handoff call dropping probabilities. First, we propose an integrated hierarchical wireless architecture over IPv6-based networks to combine the wireless access systems including cellular systems (second-generation, General Packet Radio Service, or third-generation), IEEE 802.11 a/b/g WLAN, and Bluetooth. In the proposed architecture, mobile user can request a call with quality-of-service (QoS) requirements by any wireless network interfaces that can be accessed. When the proposed coordinated call admission control (CCAC) mechanism receives a request, it takes the QoS requirements of the incoming call and the available and reserved bandwidth of this wireless system into consideration to accept or reject this request. Besides, the mechanism can coordinate with other wireless systems dynamically to adjust the bandwidth reserved for handoff calls at each wireless system in this architecture so as to reduce the call blocking probabilities. Once the call is admitted, the mobile user is able to access heterogeneous wireless access networks via multiple interfaces simultaneously. Finally, we evaluate this system to show that the CCAC on the proposed architecture outperforms other mechanisms proposed before.  相似文献   

14.
In this paper, we have studied the impact of the handoff dwell time (HDT) on the channel holding time (CHT) modeling and examined how it affects the mobile network performance evaluation. Realistic mobility model is constructed that includes the effect of HDT and we derive the important relationship between the critical parameters such as cell residence time (CRT), call holding time, CHT and HDT. Queueing priority scheme utilizing the HDT is applied to evaluate the HDT effect on performance indices in terms of the new call and handoff call blocking probabilities. It is observed that the relative error between the realistic new call blocking probability and conventional one can reach 70% and the conventional handoff blocking probability can even double the realistic one under the same specific practical condition. Next, we compare the new call and handoff call blocking probabilities when exponential handoff dwell time distribution is replaced by truncated Gaussian distribution with both the same mean and standard deviation in the discrete event simulation. A considerable gap between the handoff call blocking probabilities is shown, which indicates that the performance indices are sensitive to the handoff dwell time distribution.Zhang Yan received the B.S. degree in communication engineering from the Nanjing University of Post and Telecommunication, Peoples Republic of China, in 1997 and the M.S. degree in electrical engineering from the Beijing University of Aeronautics and Astronautics in 2000. After graduation, he worked as senior software engineer in Xinwei Telecom Technology Co., Datang Telecom Group, China, where he has been working on the CDMA base station software development. He is currently pursuing Ph.D. degree in School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore. His research interests include call admission control and resource management in wireless multimedia systems, PCS network traffic load and performance evaluation.Dr. Soong Boon-Hee received his B. Eng. (Hons. I) degree in electrical and electronic engineering from University of Auckland, New Zealand, and the Ph.D. degree from the University of Newcastle, Australia, in 1984 and 1990, respectively. He is currently an associate professor with the School of Electrical and Electronic Engineering, Nanyang Technological University. From October 1999 to April 2000, he was a visiting research fellow at the Department of Electrical and Electronic Engineering, Imperial College, UK, under the Commonwealth Fellowship Award. He also served as a consultant for Mobile IP in a recent technical field trial of Next-Generation Wireless LAN initiated by InfoComm Development Authority (IDA), Singapore. He has supervised a number of postgraduate students in the area of optimization and planning of mobile communication networks. He has been teaching a number of subjects related to the field of network performance. His area of research interests includes ad-hoc networks, mobility issues, mobile IP, optimization of wireless networks, routing algorithms, queueing theory system theory, quality of service issues in high-speed networks, and signal processing. He has published a total of 60 international journals and conferences. He is a member of IEEE.  相似文献   

15.
Mobile IP has been developed to provide the continuous information network access to mobile users. The performance of Mobile IP mobility management scheme is dependent on traffic characteristics and user mobility. Consequently, it is important to assess this performance in-depth through these factors. This paper introduces a novel analytical model of handoff management in mobile IP networks. The proposed model focuses on the effect the traffic types and their frame error rates on the handoff latency. It is derived based on general distribution of both successful transmission attempts and the residence time to be applicable in all cases of traffic characteristics and user mobility. The impact of the behavior of wireless connection, cell residence time, probability distribution of transmission time and the handoff time is investigated. Numerical results are obtained and presented for both TCP and UDP traffics. As expected, the reliability of TCP leads to higher handoff latency than UDP traffic. It is shown that, higher values of FER increase the probability of erroneous packet transfer across the link layer. A short retransmission time leads to end the connection most likely in the existing FA; however a long retransmission time leads to a large delivery time. The proposed model is robust in the sense that it covers the impact of all the effective parameters and can be easily extended to any distribution.  相似文献   

16.
Using intelligent techniques to perform radio resource management is an effective method. The paper proposes neural fuzzy control for radio resource management in hierarchical cellular systems supporting multimedia services. A neural fuzzy resource manager (NFRM) is designed, which mainly contains a neural fuzzy channel allocation processor (NFCAP). The NFCAP has a two-layer architecture: a fuzzy cell selector (FCS) in the first layer and a neural fuzzy call-admission and rate controller (NFCRC) in the second layer. The FCS chooses not only the handoff failure probabilities and the resource availabilities in both microcell and macrocell, but also the user mobility, as input linguistic variables. The NFCRC takes the handoff failure probability and the resource availability of the selected cell as input variables to perform call admission control and rate control for the call. Simulation results show that the NFRM can always guarantee the quality of service (QoS) requirement for handoff failure probability for all traffic loads. Also, the NFRM improves the system utilization by 31.1% while increasing the handoff rate by 2% over the overflow channel allocation (OCA) scheme; it enhances the system utilization by 6.3% and 1.4%, and still reduces the handoff rate by 14.9% and 6.8%, as compared to the combined channel allocation (CCA) and fuzzy channel allocation control (FCAC) schemes, respectively, under a predefined QoS constraint.  相似文献   

17.
Multi-cell mobility model and performance analysis for wireless cellular networks are presented. The mobility model plays an important role in characterizing different mobility-related parameters such as handoff call arrival rate, blocking or dropping probability, and channel holding time. We present a novel tractable multi-cell mobility model for wireless cellular networks under the general assumptions that the cell dwell times induced by mobiles’ mobility and call holding times are modeled by using a general distribution instead of exponential distribution. We propose a novel generalized closed-form matrix formula to support the multi-cell mobility model and call holding time with general distributions. This allows us to develop a fixed point algorithm to compute loss probabilities, and handoff call arrival rate under the given assumptions. In order to reduce computational complexity of the fixed point algorithm, the channel holding time of each cell is down-modeled into an exponentially distributed one for purposes of simplification, since the service time is insensitive in computing loss probabilities of each cell due to Erlang insensitivity. The accuracy of the multi-cell analytic mobility model is supported by the comparison of the simulation results and the analytic ones.  相似文献   

18.
How to efficiently utilize the scarce radio channel resource while maintaining the desired user‐perceived quality level and improved network performance is a major challenge to a wireless network designer. As one solution to meet this challenge in cellular mobile networks, a network architecture with hierarchical layers of cells has been widely considered. In this paper, we study the performance of a hierarchical cellular network that allows the queueing of both overflow slow‐mobility calls (from the lower layer microcells) and macrocell handover fast‐mobility calls that are blocked due to lack of free resources at the macrocell. Further, to accurately represent the wireless user behaviour, the impact of call repeat phenomenon is considered in the analysis of new call blocking probability. Performance analysis of the hierarchical cellular structure with queueing and call repeat phenomenon is performed using both analytical and simulation techniques. Numerical results show that queueing of calls reduces forced call termination probability and increases resource utilization with minimal call queueing delay. It is also shown that ignoring repeat calls leads to optimistic estimates of new call blocking probability especially at high offered traffic. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Cognitive Radio is an emerging technology to accommodate the growing demand for wireless technology via dynamic spectrum access to enhance spectrum efficiency. Spectrum handoff is an important component of Cognitive Radio technology for practical implementation of radio frequency access strategy and better utilization of spectrum in both primary and secondary networks. The probability of spectrum handoff and expected number of spectrum handoffs are key parameters in performance analysis and design of the cognitive radio network. This work presents an analytical model to evaluate the impact of secondary users’ mobility on intra-cell spectrum handoff considering primary users’ activity model in a cognitive radio network. A standard form of intra-cell spectrum handoff probability and expected number of intra-cell spectrum handoffs are derived for complete call duration of a non-stationary secondary user. The probability and expected number of intra-cell spectrum handoffs of a post inter-cell handoff call are also derived for generalized residual time distributions of call holding time and spectrum holes. A detailed analysis of these performance measuring metrics is presented under the impact of departure rate and cell crossing rate of secondary users. The accuracy of the derived analytical result is validated by Monte-Carlo simulation of the model.  相似文献   

20.
We present a new scheme that addresses the call handoff problem in mobile cellular networks. Efficiently solving the handoff problem is important for guaranteeing quality of service to already admitted calls in the network. Our scheme is based on a new approach called channel carrying: when a mobile user moves from one cell to another, render certain mobility conditions, the user is allowed to carry its current channel into the new cell. We propose a new channel assignment scheme to ensure that this movement of channels will not lead to any extra co-channel interference or channel locking. In our scheme, the mobility of channels relies entirely on localized information, and no global coordination is required. Therefore, the scheme is simple and easy to implement. We further develop a hybrid channel carrying scheme that allows us to maximize performance under various constraints  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号