首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Crop residues on the soil surface decrease soil erosion and increase soil organic carbon and the management of crop residues is an integral part of many conservation tillage systems. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to determine the effects of water content on the remotely sensed estimates of crop residue cover and to propose a method to mitigate the effects of water content on remotely sensed estimates of crop residue cover. Reflectance spectra of crop residues and soils were measured in the lab over the 400-2400 nm wavelength region. Reflectance of scenes with various residue cover fractions and water contents was simulated using a linear mixture model. Additional spectra of scenes with mixtures of crop residues and soil were also acquired in corn, soybean, and wheat fields with different tillage treatments and different water content conditions. Crop residue cover was linearly related to the cellulose absorption index (CAI), which was defined as the relative intensity of an absorption feature near 2100 nm. Water in the crop residue significantly attenuated CAI and changed the slope of the residue cover vs. CAI relationship. Without an appropriate correction, crop residue covers were underestimated as scene water content increased. Spectral vegetation water indices were poorly related to changes in the water contents of crop residues and soils. A new reflectance ratio water index that used the two bands located on the shoulders of the cellulose absorption feature to estimate scene water conditions was proposed and tested with data from corn, soybean, and wheat fields. The ratio water index was used to describe the changes in the slope of crop residue cover vs. CAI and improve the predictions of crop residue cover. These results indicate that spatial and temporal adjustments in the spectral estimates of crop residue cover are possible. Current mutispectral imaging systems will not provide reliable estimates of crop residue cover when scene water content varies. Hyperspectral data are not required, because the three narrow bands that are used for both CAI and the scene moisture correction could be incorporated in advanced multispectral sensors. Thus, regional surveys of soil conservation practices that affect soil carbon dynamics may be feasible using either advanced multispectral or hyperspectral imaging systems.  相似文献   

2.
Assessing crop residue cover using shortwave infrared reflectance   总被引:7,自引:0,他引:7  
Management of crop residues is an important consideration for reducing soil erosion and increasing soil organic carbon. Current methods of measuring residue cover are inadequate for characterizing the spatial variability of residue cover over large fields. The objectives of this research were to determine the spectral reflectance of crop residues and soils and to assess the limits of discrimination that can be expected in mixed scenes. Spectral reflectances of dry and wet crop residues plus three diverse soils were measured over the 400-2400 nm wavelength region. Reflectance values for scenes with varying proportions of crop residues and soils were simulated. Additional spectra of scenes with mixtures of crop residues, green vegetation, and soil were also acquired in corn, soybean, and wheat fields with different tillage treatments. The spectra of dry crop residues displayed a broad absorption feature near 2100 nm, associated with cellulose-lignin, that was absent in spectra of soils. Crop residue cover was linearly related (r2=0.89) to the Cellulose Absorption Index (CAI), which was defined as the relative depth of this absorption feature. Green vegetation cover in the scene attenuated CAI, but was linearly related to the Normalized Difference Vegetation Index (NDVI, r2=0.93). A novel method is proposed to assess soil tillage intensity classes using CAI and NDVI. Regional surveys of soil conservation practices that affect soil carbon dynamics may be feasible using advanced multispectral or hyperspectral imaging systems.  相似文献   

3.
Crop residues left on agricultural lands after harvest play an important role in controlling and protecting soil against water and wind erosion. One challenge of remote sensing is to differentiate crop residues from bare soil and crop cover, especially when the residues have been weathered and/or when the crop cover phenology is more advanced. Several techniques for mapping and estimating crop residues exist in the literature. However, these methods are time consuming and not suited for quantitative evaluation. They have the disadvantage of being less rigorous and accurate because they do not consider the spectral mixture of different materials in the same pixel. In this study, the potential of hyperspectral (Probe-1) and multispectral high spatial resolution (IKONOS) data were compared for estimating and mapping crop residues on agricultural lands using the constrained linear spectral mixture analysis approach. Image data were spectrally and radiometrically calibrated, atmospherically corrected, as well as geometrically rectified. Pure spectral signatures of residues, bare soil and crop cover were manually extracted from image data based on prior knowledge of the fields. Percent (fraction) cover for each sampling point was extracted using unmixing and validated against ground reference measurements. The best results were achieved for the crop cover (index of agreement (D) = 0.92 and root mean square error (RMSE) = 0.09) adjusted for the impurity of the endmembers canola, pea and wheat, followed by the wheat residues (D = 0.76 and RMSE = 0.12). Considering only the wheat residues in fields with a canola crop, D increases to 0.86. The soil fractions were generally underestimated with D = 0.72, and no significant improvements could be made after adjusting for the shadow effect. The estimations from the IKONOS data were poorer for the same cover types (residues: D = 0.40 and RMSE = 0.24; crop: D = 0.51 and RMSE = 0.38; soil: D = 0.58 and RMSE = 0.29). Relative to the IKONOS data, the better performance of the hyperspectral data is mainly due to the improved spectral band characteristics, especially in the SWIR, which is sensitive to the residues (lignin and cellulose absorption features), soil and crop cover.  相似文献   

4.
5.
Land surface temperature (LST) is a key parameter in numerous environmental studies. Surface heterogeneity induces uncertainty in estimating subpixel temperature. To take an advantage of simultaneous, multi-resolution observations at coincident nadirs by the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and the MODerate-resolution Imaging Spectroradiometer (MODIS), LST products from the two sensors were examined for a portion of suburb area in Beijing, China. We selected Soil-Adjusted Vegetation Index (SAVI), Normalized Multi-band Drought Index (NMDI), Normalized Difference Built-up Index (NDBI) and Normalized Difference Water Index (NDWI) as representative remote sensing indices for four land cover types (vegetation, bare soil, impervious and water area), respectively. By using support vector machines, the overall classification accuracy of the four land cover types with inputs of the four remote sensing indices, extracted from ASTER visible near infrared (VNIR) bands and shortwave infrared (SWIR) bands, reached 97.66%, and Kappa coefficient was 0.9632. In order to lower the subpixel temperature estimation error caused by re-sampling of remote sensing data, a disaggregation method for subpixel temperature using the remote sensing endmember index based technique (DisEMI) was established in this study. Firstly, the area ratios and statistical information of endmember remote sensing indices were calculated from ASTER VNIR/SWIR data at 990 m and 90 m resolutions, respectively. Secondly, the relationship between the 990 m resolution MODIS LST and the corresponding input parameters (area ratios and endmember indices at the 990 m resolution) was trained by a genetic algorithm and self-organizing feature map artificial neural network (GA-SOFM-ANN). Finally, the trained models were employed to estimate the 90 m resolution subpixel temperature with inputs of area ratios and endmember indices at the 90 m resolution. ASTER LST product was used for verifying the estimated subpixel temperature, and the verified results indicate that the estimated temperature distribution was basically consistent with that of ASTER LST product. A better agreement was found between temperatures derived by our proposed method (DisEMI) and the ASTER 90 m data (R2 = 0.709 and RMSE = 2.702 K).  相似文献   

6.
Daytime fire detection using airborne hyperspectral data   总被引:1,自引:0,他引:1  
The shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to 2500 nm, can include significant emitted radiance from fire. There have been relatively few evaluations of the utility of shortwave infrared remote sensing data, and in particular hyperspectral remote sensing data, for fire detection. We used an Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) scene acquired over the 2003 Simi Fire to identify the hyperspectral index that was able to most accurately detect pixels containing fire. All AVIRIS band combinations were used to calculate normalized difference indices, and kappa was used to compare classification ability of these indices for three different fire temperature ranges. The most accurate index was named the Hyperspectral Fire Detection Index (HFDI). The HFDI uses shortwave infrared bands centered at 2061 and 2429 nm. These bands are sensitive to atmospheric attenuation, so the impacts of variable elevation, solar zenith angle, and atmospheric water vapor concentration on HFDI were assessed using radiative transfer modeling. While varying these conditions did affect HFDI values, relative differences between background HFDI and HFDI for 1% fire pixel coverage were maintained. HFDI is most appropriate for detection of flaming combustion, and may miss lower temperature smoldering combustion at low percent pixel coverage due to low emitted radiance in the shortwave infrared. HFDI, two previously proposed hyperspectral fire detection indices, and a broadband shortwave infrared-based fire detection index were applied to AVIRIS scenes acquired over the 2007 Zaca Fire and 2008 Indians Fire. A qualitative comparison of the indices demonstrated that HFDI provides improved detection of fire with less variability in background index values.  相似文献   

7.
We present a new, detailed three dimensional (3D) approach to modelling the pre- and post-fire reflectance of a two-layer savanna system modelled as heterogeneous overstory (tree) and understory (grass) layers. The models were developed from detailed field measurements of structural and radiometric properties made at experimental burn plots with varying canopy cover in the Kruger National Park, South Africa. The models were used to simulate 400-2500 nm spectral reflectance at 10-500 m spatial scale for various viewing and solar geometry configurations. The model simulations closely matched pre-fire and post-fire ground-based, helicopter and satellite remote sensing observations (all r2 values > 0.95 except one post-fire case). The largest discrepancies between modelled and observed reflectances occurred typically at wavelengths greater than 1200 nm for the post-fire simulations. The modelling results indicate that representation of overstory and understory structure and scattering properties are required to represent the burn signal in a typical savanna system. The described 3D modelling approach enables separation of the scattering contributions of the different scene components and is suited to testing and validating fire impact assessment algorithms at locations where the difficulty of obtaining both pre- and post-fire observations is a severe constraint.  相似文献   

8.
Two different configurations of a shortwave infrared water stress index (SIWSI) are derived from the MODIS near- and shortwave infrared data. A large absorption by leaf water occurs in the shortwave infrared wavelengths (SWIR) and the reflectance from plants thereby is negatively related to leaf water content. Two configurations of a water stress index, SIWSI(6,2) and SIWSI(5,2) are derived on a daily basis from the MODIS satellite data using the information from the near infrared (NIR) channel 2 (841-876 nm) and the shortwave infrared channel 5 (1230-1250 nm) or 6 (1628-1652 nm), respectively, which are wavelength bands at which leaf water content influence the radiometric response. The indices are compared to in situ top layer soil moisture measurements from the semiarid Senegal 2001 and 2002, serving as an indicator of canopy water content. The year 2001 rainfall in the region was slightly below average and the results show a strong correlation between SIWSI and soil moisture. The SIWSI(6,2) performs slightly better than the SIWSI(5,2) (r2=0.87 and 0.79). The fieldwork in 2002 did not verify the results found in 2001. However, year 2002 was an extremely dry year and the vegetation cover apparently was too sparse to provide information on the canopy water content. To test the robustness of the SIWSI findings in 2001, soil moisture has been modelled from daily rainfall data at 10 sites in the central and northern part of Senegal. The correlations between SIWSI and simulated soil moisture are generally high with a median r2=0.72 for both configurations of the SIWSI. It is therefore suggested that the combined information from the MODIS near- and shortwave infrared wavelengths is useful as an indicator of canopy water stress in the semiarid Sahelian environment.  相似文献   

9.
Models estimating surface energy fluxes over partial canopy cover with thermal remote sensing must account for significant differences between the radiometric temperatures and turbulent exchange rates associated with the soil and canopy components of the thermal pixel scene. Recent progress in separating soil and canopy temperatures from dual angle composite radiometric temperature measurements has encouraged the development of two-source (soil and canopy) approaches to estimating surface energy fluxes given observations of component soil and canopy temperatures. A Simplified Two-Source Energy Balance (STSEB) model has been developed using a “patch” treatment of the surface flux sources, which does not allow interaction between the soil and vegetation canopy components. A simple algorithm to predict the net radiation partitioning between the soil and vegetation is introduced as part of the STSEB patch modelling scheme. The feasibility of the STSEB approach under a full range in fractional vegetation cover conditions is explored using data collected over a maize (corn) crop in Beltsville Maryland, USA during the 2004 summer growing season. Measurements of soil and canopy component temperatures as well as the effective composite temperature were collected over the course of the growing season from crop emergence to cob development. Comparison with tower flux measurements yielded root-mean-square-difference values between 15 and 50 W m− 2 for the retrieval of the net radiation, soil, sensible and latent heat fluxes. A detailed sensitivity analysis of the STSEB approach to typical uncertainties in the required inputs was also conducted indicating greatest model sensitivity to soil and canopy temperature uncertainties with relative errors reaching ∼ 30% in latent heat flux estimates. With algorithms proposed to infer component temperatures from bi-angular satellite observations, the STSEB model has the capability of being applied operationally.  相似文献   

10.
Hyperspectral determination of soil types has the potential to become an important addition to the methods used for classification and mapping of soils. In this study laboratory measured spectra of different soils, vegetation and crop residue were combined to simulate hyperspectral remote sensing imagery. The overall aim was to examine the spectral unmixing of these materials under laboratory conditions to better understand the limits to prediction of soil types and determination of cover fractions. Two different methods were utilized to mix spectra of the soil and vegetation and substantial differences were observed in the unmixing results from the different image types, particularly in mixed pixels. Results found pure soils were easily distinguished from each other when not mixed with vegetation, while some mixes of soil and vegetation were confused as pure soil spectra. The accuracy of abundance fractions retrieved in the unmixing process also varied substantially with soil type and vegetation cover.  相似文献   

11.
A two-source (soil + vegetation) energy balance model using microwave-derived near-surface soil moisture as a key boundary condition (TSMSM) and another scheme using thermal-infrared (radiometric) surface temperature (TSMTH) were applied to remote sensing data collected over a corn and soybean production region in central Iowa during the Soil Moisture Atmosphere Coupling Experiment (SMACEX)/Soil Moisture Experiment of 2002 (SMEX02). The TSMSM was run using fields of near-surface soil moisture from microwave imagery collected by aircraft on six days during the experiment, yielding a root mean square difference (RMSD) between model estimates and tower measurements of net radiation (Rn) and soil heat flux (G) of approximately 20 W m− 2, and 45 W m− 2 for sensible (H) and latent heating (LE). Similar results for H and LE were obtained at landscape/regional scales when comparing model output with transect-average aircraft flux measurements. Flux predictions from the TSMSM and TSMTH models were compared for two days when both airborne microwave-derived soil moisture and radiometric surface temperature (TR) data from Landsat were available. These two days represented contrasting conditions of moderate crop cover/dry soil surface and dense crop cover/moist soil surface. Surface temperature diagnosed by the TSMSM was also compared directly to the remotely sensed TR fields as an additional means of model validation. The TSMSM performed well under moderate crop cover/dry soil surface conditions, but yielded larger discrepancies with observed heat fluxes and TR under the high crop cover/moist soil surface conditions. Flux predictions from the thermal-based two-source model typically showed biases of opposite sign, suggesting that an average of the flux output from both modeling schemes may improve overall accuracy in flux predictions, in effect incorporating multiple remote-sensing constraints on canopy and soil fluxes.  相似文献   

12.
An assessment of the black ocean pixel assumption for MODIS SWIR bands   总被引:2,自引:0,他引:2  
Recent studies show that an atmospheric correction algorithm using shortwave infrared (SWIR) bands improves satellite-derived ocean color products in turbid coastal waters. In this paper, the black pixel assumption (i.e., zero water-leaving radiance contribution) over the ocean for the Moderate Resolution Imaging Spectroradiometer (MODIS) SWIR bands at 1240, 1640, and 2130 nm is assessed for various coastal ocean regions. The black pixel assumption is found to be generally valid with the MODIS SWIR bands at 1640 and 2130 nm even for extremely turbid waters. For the MODIS 1240 nm band, however, ocean radiance contribution is generally negligible in mildly turbid waters such as regions along the U.S. east coast, while some slight radiance contributions are observed in extremely turbid waters, e.g., some regions along the China east coast, the estuary of the La Plata River. Particularly, in the Hangzhou Bay, the ocean radiance contribution at the SWIR band 1240 nm results in an overcorrection of atmospheric and surface effects, leading to errors of MODIS-derived normalized water-leaving radiance at the blue reaching ~ 0.5 mW cm− 2 μm− 1 sr− 1. In addition, we found that, for non-extremely turbid waters, i.e., the ocean contribution at the near-infrared (NIR) band < ~ 1.0 mW cm− 2 μm− 1 sr− 1, there exists a good relationship in the regional normalized water-leaving radiances between the red and the NIR bands. Thus, for non-extremely turbid waters, such a red-NIR radiance relationship derived regionally can possibly be used for making corrections for the regional NIR ocean contributions without using the SWIR bands, e.g., for atmospheric correction of ocean color products derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS).  相似文献   

13.
Quantitative estimation of fractional cover of photosynthetic vegetation (fPV), non-photosynthetic vegetation (fNPV) and bare soil (fBS) is critical for natural resource management and for modeling carbon dynamics. Accurate estimation of fractional cover is especially important for monitoring and modeling savanna systems, subject to highly seasonal rainfall and drought, grazing by domestic and native animals, and frequent burning. This paper describes a method for resolving fPV, fNPV and fBS across the ~ 2 million km2 Australian tropical savanna zone with hyperspectral and multispectral imagery. A spectral library compiled from field campaigns in 2005 and 2006, together with three EO-1 Hyperion scenes acquired during the 2005 growing season were used to explore the spectral response space for fPV, fNPV and fBS. A linear unmixing approach was developed using the Normalized Difference Vegetation Index (NDVI) and the Cellulose Absorption Index (CAI). Translation of this approach to MODerate resolution Imaging Spectroradiometer (MODIS) scale was assessed by comparing multiple linear regression models of NDVI and CAI with a range of indices based on the seven MODIS bands in the visible and shortwave infrared region (SWIR) using synthesized MODIS surface reflectance data on the same dates as the Hyperion acquisitions. The best resulting model, which used NDVI and the simple ratio of MODIS bands 7 and 6 (SWIR3/SWIR2), was used to generate a time series of fractional cover from 16 day MODIS nadir bidirectional reflectance distribution function-adjusted reflectance (NBAR) data from 2000-2006. The results obtained with MODIS NBAR were validated against grass curing measurement at ten sites with good agreement at six sites, but some underestimation of fNPV proportions at four other sites due to substantial sub-pixel heterogeneity. The model was also compared with remote sensing measurements of fire scars and showed a good matching in the spatio-temporal patterns of grass senescence and posterior burning. The fractional cover profiles for major grassland cover types showed significant differences in relative proportions of fPV, fNPV and fBS, as well as large intra-annual seasonal variation in response to monsoonal rainfall gradients and soil type. The methodology proposed here can be applied to other mixed tree-grass ecosystems across the world.  相似文献   

14.
Multispectral thermal infrared remote sensing of surface emissivities can detect and monitor long term land vegetation cover changes over arid regions. The technique is based on the link between spectral emissivities within the 8.5-9.5 μm interval and density of sparsely covered terrains. The link exists regardless of plant color, which means that it is often possible to distinguish bare soils from senescent and non-green vegetation. This capability is typically not feasible with vegetation indices. The method is demonstrated and verified using ASTER remote sensing observations between 2001 and 2003 over the Jornada Experimental Range, a semi-arid site in southern New Mexico, USA. A compilation of 27 nearly cloud-free, multispectral thermal infrared scenes revealed spatially coherent patterns of spectral emissivities decreasing at rates on the order of 3% per year with R2 values of ∼ 0.82. These patterns are interpreted as regions of decreased vegetation densities, a view supported by ground-based leaf area index transect data. The multi-year trend revealed by ASTER's 90-m resolution data are independently confirmed by 1-km data from Terra MODIS. Comparable NDVI images do not detect the long-term spatially coherent changes in vegetation. These results show that multispectral thermal infrared data, used in conjunction with visible and near infrared data, could be particularly valuable for monitoring land cover changes.  相似文献   

15.
Reedbeds are important habitats for supporting biodiversity and delivering a range of ecosystem services, yet reedbeds in the UK are under threat from intensified agriculture, changing land use and pollution. To develop appropriate conservation strategies, information on the distribution of reedbeds is required. Field surveys of these wetland environments are difficult, time consuming and expensive to execute for large areas. Remote sensing has the potential to replace or complement such field surveys, yet the specific application to reedbed habitats has not been fully investigated. In the present study, airborne hyperspectral and LiDAR imagery were acquired for two sites in Cumbria, UK. The research aimed to determine the most effective means of analysing hyperspectral data covering the visible, near infrared (NIR) and shortwave infrared (SWIR) regions for mapping reedbeds and to investigate the effects of incorporating image textural information and LiDAR-derived measures of canopy structure on the accuracy of reedbed delineation. Due to the high dimensionality of the hyperspectral data, three image compression algorithms were evaluated: principal component analysis (PCA), spectrally segmented PCA (SSPCA) and minimum noise fraction (MNF). The LiDAR-derived measures tested were the canopy height model (CHM), digital surface model (DSM) and the DSM-derived slope map. The SSPCA-compressed data produced the highest reedbed accuracy and processing efficiency. The optimal SSPCA dataset incorporated 12 PCs comprised of the first 3 PCs derived from each of the spectral segments: visible (392-700 nm), NIR (701-972 nm), SWIR-1 (973-1366 nm) and SWIR-2 (1530-2240 nm). Incorporating image textural measures produced a significant improvement in the classification accuracy when using MNF-compressed data, but had no impact when using the SSPCA-compressed imagery. A significant improvement (+ 11%) in the accuracy of reedbed delineation was achieved when a mask generated by applying a 3 m threshold to the LiDAR-derived CHM was used to filter the reedbed map derived from the optimal SSPCA dataset. This paper demonstrates the value in combining appropriately compressed hyperspectral imagery with LiDAR data for the effective mapping of reedbed habitats.  相似文献   

16.
High spatial resolution (∼ 100 m) thermal infrared band imagery has utility in a variety of applications in environmental monitoring. However, currently such data have limited availability and only at low temporal resolution, while coarser resolution thermal data (∼ 1000 m) are routinely available, but not as useful for identifying environmental features for many landscapes. An algorithm for sharpening thermal imagery (TsHARP) to higher resolutions typically associated with the shorter wavebands (visible and near-infrared) used to compute vegetation indices is examined over an extensive corn/soybean production area in central Iowa during a period of rapid crop growth. This algorithm is based on the assumption that a unique relationship between radiometric surface temperature (TR) relationship and vegetation index (VI) exists at multiple resolutions. Four different methods for defining a VI − TR basis function for sharpening were examined, and an optimal form involving a transformation to fractional vegetation cover was identified. The accuracy of the high-resolution temperature retrieval was evaluated using aircraft and Landsat thermal imagery, aggregated to simulate native and target resolutions associated with Landsat, MODIS, and GOES short- and longwave datasets. Applying TsHARP to simulated MODIS thermal maps at 1-km resolution and sharpening down to ∼ 250 m (MODIS VI resolution) yielded root-mean-square errors (RMSE) of 0.67-1.35 °C compared to the ‘observed’ temperature fields, directly aggregated to 250 m. Sharpening simulated Landsat thermal maps (60 and 120 m) to Landsat VI resolution (30 m) yielded errors of 1.8-2.4 °C, while sharpening simulated GOES thermal maps from 5 km to 1 km and 250 m yielded RMSEs of 0.98 and 1.97, respectively. These results demonstrate the potential for improving the spatial resolution of thermal-band satellite imagery over this type of rainfed agricultural region. By combining GOES thermal data with shortwave VI data from polar orbiters, thermal imagery with 250-m spatial resolution and 15-min temporal resolution can be generated with reasonable accuracy. Further research is required to examine the performance of TsHARP over regions with different climatic and land-use characteristics at local and regional scales.  相似文献   

17.
Soil characteristics provide important support for understanding transformations that occur in environmental systems. Physical characteristics and chemical compositions of soils controlled by pedogenetic processes, climatic changes and land use imply different types of environmental transformations. Reflectance spectroscopy is an alternative soil mapping technique that uses spectral absorption features between visible (VIS) and short-wave infrared (SWIR) wavelengths (0.3-2.5 μm) for determining soil mineralogy. Soil analysis by means of reflectance spectroscopy and orbital optical sensors have provided favorable results in mapping transformation processes in environmental systems, particularly in arid and semiarid climates in extra-tropical terrains. In the case of inter-tropical environments, these methods cannot be readily applied due to local factors such as lack of exposed regolith, high amounts of soil moisture and the presence of dense vegetation. This study uses Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and reflectance spectroscopy data to map mineral components of soils covering a part of the state of São Paulo, Brazil, which could be linked to key aspects of environmental transformations in this tropical area (e.g., climate change, shifts in agriculture fronts, ph, and soil characteristics). We collected forty-two (42) soil samples at a depth of 0-20 cm, considering that this superficial layer corresponds to the highest correlation with soil properties detected by the ASTER sensor. These samples were measured using a FieldSpec FR spectrometer, and the derived spectra were interpreted for mineral composition. Interpretation was supported by X-ray diffraction analysis on the same samples. The spectral signatures were re-sampled to ASTER VNIR (AST1-4: 0.52-0.86 μm) and SWIR (AST5-9: 1.60-2.43 μm) spectral bandwidths and validated by comparing reflectance spectra of field samples with those extracted from atmospherically corrected and calibrated ASTER pixels. The agreement between spectral signatures measured from soil samples and those derived from ASTER imagery pixels proved plausible, with R2 correlation values ranging from 0.6493 to 0.7886. This signifies that diagnostic spectral features of key minerals in tropical soils can be mapped at the spectral resolution of 9-band ASTER VNIR through SWIR reflectance. We used these spectral signatures as end-members in hyperspectral routine classifications adapted for use with ASTER data. Results proved possible the identification and remote mapping of minerals such as kaolinite, montmorillonite and gibbsite, as well as the distinction between iron-rich and iron-poor soils.  相似文献   

18.
A new method is described for the retrieval of fractional cover of large woody plants (shrubs) at the landscape scale using moderate resolution multi-angle remote sensing data from the Multiangle Imaging SpectroRadiometer (MISR) and a hybrid geometric-optical (GO) canopy reflectance model. Remote sensing from space is the only feasible method for regularly mapping woody shrub cover over large areas, an important application because extensive woody shrub encroachment into former grasslands has been seen in arid and semi-arid grasslands around the world during the last 150 years. The major difficulty in applying GO models in desert grasslands is the spatially dynamic nature of the combined soil and understory background reflectance: the background is important and cannot be modeled as either a Lambertian scatterer or by using a fixed bidirectional reflectance distribution function (BRDF). Candidate predictors of the background BRDF at the Sun-target-MISR angular sampling configurations included the volume scattering kernel weight from a Li-Ross BRDF model; diffuse brightness (ρ0) from the Modified Rahman-Pinty-Verstraete (MRPV) BRDF model; other Li-Ross kernel weights (isotropic, geometric); and MISR near-nadir bidirectional reflectance factors (BRFs) in the blue, green, and near infra-red bands. The best method was multiple regression on the weights of a kernel-driven model and MISR nadir camera blue, green, and near infra-red bidirectional reflectance factors. The results of forward modeling BRFs for a 5.25 km2 area in the USDA, ARS Jornada Experimental Range using the Simple Geometric Model (SGM) with this background showed good agreement with the MISR data in both shape and magnitude, with only minor spatial discrepancies. The simulations were shown to be accurate in terms of both absolute value and reflectance anisotropy over all 9 MISR views and for a wide range of canopy configurations (r2 = 0.78, RMSE = 0.013, N = 3969). Inversion of the SGM allowed estimation of fractional shrub cover with a root mean square error (RMSE) of 0.03 but a relatively weak correlation (r2 = 0.19) with the reference data (shrub cover estimated from high resolution IKONOS panchromatic imagery). The map of retrieved fractional shrub cover was an approximate spatial match to the reference map. Deviations reflect the first-order approximation of the understory BRDF in the MISR viewing plane; errors in the shrub statistics; and the 12 month lag between the two data sets.  相似文献   

19.
Tillage practices can affect the long term sustainability of agricultural soils as well as a variety of soil processes that impact the environment. Crop residue retention is considered a soil conservation practice given that it reduces soil losses from water and wind erosion and promotes sequestration of carbon in the soil. Spectral unmixing estimates the fractional abundances of surface targets at a sub-pixel level and this technique could be helpful in mapping and monitoring residue cover. This study evaluated the accuracy with which spectral unmixing estimated percent crop residue cover using multispectral Landsat and SPOT data. Spectral unmixing produced crop residue estimates with root mean square errors of 17.29% and 20.74%, where errors varied based on residue type. The model performed best when estimating corn and small grain residue. Errors were higher on soybean fields, due to the lower spectral contrast between soil and soybean residue. Endmember extraction is a critical step to successful unmixing. Small gains in accuracy were achieved when using the purest crop residue- and soil-specific endmembers as inputs to the spectral unmixing model. To assist with operational implementation of crop residue monitoring, a simple endmember extraction technique is described.  相似文献   

20.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) reflectance and emissivity data were used to discriminate nonphotosynthetic vegetation (NPV) from exposed soils, to produce a topsoil texture image, and to relate sand fraction estimates with elevation data in an agricultural area of central Brazil. The results show that the combination of the shortwave infrared (SWIR) bands 5 and 6 (hydroxyl absorption band) and thermal infrared (TIR) bands 10 and 14 (quartz reststrahlen feature) discriminated dark red clayey soils and bright sandy soils from NPV (crop litter), respectively. The ratio of the bands 10 and 14 was correlated with laboratory measured total sand fraction. When applied to the image and associated with topography, a predominance of sandy soil surfaces at lower elevations and clayey soil surfaces at higher elevations was observed. Areas presenting the largest sand fraction values, identified from ASTER band 10/14 emissivity ratio, were coincident with land degradation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号