首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been a steadily increasing interest in using electrically conductive adhesives as interconnecting materials in electronics manufacturing. In this paper, several anisotropic conductive adhesive (ACA) pastes were formulated, which consist of diglycidyl ether of bisphenol F or diglycidyl ether of bisphenol A as polymer matrix, imidazoles as curing agents, and different sizes of silver (Ag) powders or gold (Au)-coated polymer spheres as conductive particles. The effects of ACA resin and different curing agents, as well as different conductive particles, on flexible substrate of the flip-chip joint were studied. The results show that the size and type of different conductive particles have very limited influence on an ACA flip-chip joint. The ACA resin as well as the curing agent can affect the reliability of the joint. The same results can be applied for the failure analysis of ACA flip-chip technology.  相似文献   

2.
The effects of different bonding parameters, such as temperature, pressure, curing time, bonding temperature ramp and post-processing, on the electrical performance and the adhesive strengths of anisotropic conductive film (ACF) interconnection are investigated. The test results show that the contact resistances change slightly, but the adhesive strengths increase with the bonding temperature increased. The curing time has great influence on the adhesive strength of ACF joints. The contact resistance and adhesive strength both are improved with the bonding pressure increased, but the adhesive strengths decrease if the bonding pressure is over 0.25 MPa. The optimum temperature, pressure, and curing time ranges for ACF bonding are concluded to be at 180–200 °C, 0.15–0.2 MPa, and 18–25 s, respectively. The effects of different Teflon thickness and post-processing on the contact resistance and adhesive strength of anisotropic conductive film (ACF) joints are studied. It is shown that the contact resistance and the adhesive strength both become deteriorated with the Teflon thickness increased. The tests of different post-processing conditions show that the specimens kept in 120 °C chamber for 30 min present the best performance of the ACF joints. The thermal cycling (−40 to 125 °C) and the high temperature/humidity (85 °C, 85% RH) aging test are conducted to evaluate the reliability of the specimens with different bonding parameters. It is shown that the high temperature/humidity is the worst condition to the ACF interconnection.  相似文献   

3.
Post curing of electrically conductive adhesives (silver filled epoxy) by heating at an elevated temperature significantly enhances the thermal and mechanical stability of conductive adhesive joints. The contact electrical resistivity and thickness of a joint with epoxy or silicone based adhesive tend to decrease cycle to cycle upon thermal cycling between 30°C and 50°C and upon compression (up to 0.55 MPa), except for the silicone joint in the absence of compression. The effect of compression is significant in epoxy joint without post curing and in silicone joint, but is insignificant in epoxy joint after post curing, The effect of thermal cycling is significant in epoxy joint without post curing, less significant in silicone joint, and insignificant in epoxy joint after post curing.  相似文献   

4.
Novel Isotropical Conductive Adhesives for Electronic Packaging Application   总被引:1,自引:0,他引:1  
Isotropical conductive adhesives (ICAs) have recently received a lot of focus and attention from the researchers in electronic industry as a potential substitute to lead-bearing solders. In this paper, a novel kind of isotropical conductive adhesives was made by using silver (Ag) nanowires and nanosized silver particles as conductive fillers. These Ag nanowires with dismeters in the range of 30–50 nm and lengths of up to ${sim 50}~mu {rm m}$ could be synthesized by a solution-phase method, which was proceed by reducing silver nitrate with ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). Electrical property including bulk resistivity and mechanical property including shear strength were investigated and compared with that of conventional ICA filled with micrometer-sized Ag particles or nanometer-sized Ag particles. Our results indicated that ICA filled Ag nanowires exhibited higher conductivity, higher shear strength and low percolation threshold value than traditional ICA. Possible conductive mechanism was discussed based on theory calculation.   相似文献   

5.
Conductivity mechanisms of isotropic conductive adhesives (ICAs)   总被引:1,自引:0,他引:1  
Isotropic conductive adhesives (ICAs) are usually composites of adhesive resins with conductive fillers (mainly silver flakes). The adhesive pastes before cure usually have low electrical conductivity. The conductive adhesives become highly conductive only after the adhesives are cured and solidified. The mechanisms of conductivity achievement in conductive adhesives were discussed. Experiments were carefully designed in order to determine the roles of adhesive shrinkage and silver (Ag) flake lubricant removal on adhesive conductivity achievement during cure. The conductivity establishment of the selected adhesive pastes and the cure shrinkage of the corresponding adhesive resins during cure were studied. Then conductivity developments of some metallic fillers and ICA pastes with external pressures were studied by using a specially designed test device. In addition, conductivity, resin cure shrinkage, and Ag flake lubricant behavior of an ICA which was cured at room temperature (25°C) were investigated. Based on the results, it was found that cure shrinkage of the resin, rather than lubricant removal, was the prerequisite for conductivity development of conductive adhesives. In addition, an explanation of how cure shrinkage could cause conductivity achievement of conductive adhesives during cure was proposed in this paper  相似文献   

6.
We report high performance solution processed conductive inks used as contact electrodes for printed organic field effect transistors (OFETs). Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) electrodes show highly improved very low sheet resistance of 65.8 ± 6.5 Ω/square (Ω/□) by addition of dimethyl sulfoxide (DMSO) and post treatment with methanol (MeOH) solvent. Sheet resistance was further improved to 33.8 ± 8.6 Ω/□ by blending silver nanowire (AgNW) with DMSO doped PEDOT:PSS. Printed OFETs with state of the art diketopyrrolopyrrole-thieno[3,2-b]thiophene (DPPT-TT) semiconducting polymer were demonstrated with various solution processable conductive inks, including bare, MeOH treated PEDOT:PSS, single wall carbon nanotubes, and hybrid PEDOT:PSS-AgNW, as the source and drain (S/D) electrode by spray printing using a metal shadow mask. The highest field effect mobility, 0.49 ± 0.03 cm2 V−1 s−1 for DPPT-TT OFETs, was obtained using blended AgNW with DMSO doped PEDOT:PSS S/D electrode.  相似文献   

7.
Conventional isotropic conductive adhesives (ICAs) are composed of a polymeric matrix and silver (Ag) flakes. As an alternative to lead-bearing solder, ICAs offer a number of benefits, but limitations do exist for ICA technology. ICAs filled with silver flakes generally show higher initial contact resistance, unstable contact resistance, and inferior impact strength. In this study, a new class of isotropic conductive adhesives was developed by using two different fillers, silver flakes and a low-melting-point-alloy filler, into the ICA formulations. After curing, the metallurgical connections between silver particles, and between silver particles and nickel (Ni) substrate were observed using scanning electron microscopy (SEM). Electrical properties including bulk resistance, initial contact resistance, and contact resistance shifts of the ICA were investigated and compared to those of a commercial ICA, an in-house ICA filled with only the silver flake, and a eutectic Sn/Pb solder. It was found that: (1) the low-melting-point alloy filler could wet the silver flakes and nickel substrate to form metallurgical connections, (2) this ICA had much lower bulk resistance than the commercial ICA and the in-house ICA filled with only the silver flake, and (3) this ICA showed especially low initial contact resistance and more stable contact resistance during aging on nickel metal compared to the ICA filled only with silver flakes  相似文献   

8.
A new theory is introduced for the onset of electrical conduction in isotropic conductive adhesives, based on the observation that conduction is a result of the creation of conducting contacts in metal–insulator composite adhesives. The present theory resolves several prevalently contradicting issues including the onset dependency of electrical conduction on the volume fraction of filler particles, the particle size, the pressure effect, and the type of insulator matrix of an adhesive. The theory also predicts the condition for the occurrence of two percolation thresholds.  相似文献   

9.
10.
Isotropic conductive adhesives (ICAs) have been developed as an alternative for traditional tin/lead (Sn/Pb) solders for electronic applications. Compared to mature soldering technology, conductive adhesive technology is still in its infant stage, therefore, there are some limitations for current commercial ICAs. Two critical limitations are poor impact performance and unstable contact resistance with nonnoble metal finished components. These limitations seriously hindered the wide applications of ICA's. No current commercial ICAs show both desirable impact performance and stable contact resistance. In this paper, novel conductive adhesives were formulated using mixtures of an epoxide-modified polyurethane resin and a bisphenol-F type epoxy resin and a corrosion inhibitor. Cure profiles, rheology, and dynamic mechanical properties of the conductive adhesives were studied using a differential scanning calorimeter (DSC), a rheometer, and a dynamic mechanical analyzer (DMA), respectively. Impact strength and contact resistance with several nonnoble metals (Sn/Pb, Sn, and copper) of these conductive adhesives were tested and compared to those of a commercial conductive adhesive. It was found that these in-house conductive adhesives showed superior impact performance and substantially stable contact resistance with nonnoble metal finished components during elevated temperature and humidity aging  相似文献   

11.
Ohmic heating was demonstrated as a novel curing method (or curing enhancement) useful in decreasing the resistivity of conductive traces printed with both micro- and nanoparticle-loaded inks while (1) only locally heating the substrate and (2) curing in a matter of seconds compared with the range of 30?min to 1?h required by traditional oven-curing. In one experiment using traces composed of microparticle ink, which required initial air-drying as a preprocess step, application of an ohmic curing cycle resulted in resistivity of 80?n???m, roughly six times that of bulk silver. In a second experiment employing nanoparticle inks, which required an initial thermal cure as a preprocess, a resistivity of 43?n???m, roughly three times that of bulk silver, was attained after the application of an ohmic curing cycle. Electrical characterization of the ohmic curing process was performed in real time to understand the impact of cycling and duration on the resulting conductivity. Finally, the effect of printed trace length on the ohmic curing process was explored and found to have a near-linear relationship with the reduction in resistance when the applied electrical current was normalized to measured resistance. The microstructural changes which occurred as a result of ohmic curing such as particle sintering and grain growth were characterized by scanning electron microscopy. The results presented in this work demonstrate the use of ohmic heating to overcome temperature limitations imposed on a thermal curing process by substrate material properties or other sources.  相似文献   

12.
文章首先介绍了微波多芯片组件两种常见的封装结构形式及导电胶自动分配技术需求,并对接触式和无接触式导电胶点胶技术进行了论述,分析了它们各自的优缺点并对各项点胶参数进行了对比。然后,阐述了计量管式接触点胶技术以及需要研究的针头漏胶、点胶间隙确定以及基板表面状态对胶滴的影响三方面内容。紧接着阐述喷射式非接触点胶技术以及需要研究的空气阻力造成的胶滴飞溅问题。最后,提出计量管式接触点胶技术最适合腔体结构微波多芯片组件自动点胶。  相似文献   

13.
Flip chip attachment on flexible LCP substrate using an ACF   总被引:2,自引:0,他引:2  
In this study the reliability of a flip chip bonding process using anisotropic conductive adhesives (ACA) was evaluated. The flexible substrates used were made of liquid crystal polymer (LCP), which is an interesting new material having excellent properties for flexible printed circuit boards. The test samples were prepared using two different anisotropic conductive films (ACF) having the same fast-cure resin matrix, but different conductive particles. The reliability of the test samples was studied by accelerated environmental tests. In the constant humidity test the temperature was 85 °C and the relative humidity was 85%. The temperature cycling test was carried out between temperatures of −40 °C and 85 °C. To determine the exact time of a failure the resistance of each test sample was measured using continuous real-time measurement. A clear difference between the behaviour of the conductive particles was seen in the test. While the adhesive having polymer particles had only one failure during testing, the adhesive having nickel particles had a considerable number of failures in both tests. Cross sections of the samples were made to analyze the failure mechanisms.  相似文献   

14.
Smart labels are a new generation of low cost transponders consisting of a transponder chip and a flexible type of antenna. Applying a flip chip assembly technology yields a new generation of low cost radio frequency identification (RFID) system that is a paper-thin smart label. Anisotropically conductive adhesive (ACA) is utilized to attach a flip chip onto a paper substrate to form the BiStatix RFID tag. Unlike bar codes, which are passive tags, smart labels can dynamically transmit and receive information to help identify, track and route packages remotely. The concept of flipping or inverting a silicon chip to be mounted on a paper substrate offers distinct advantages and enables achieving the cost and performance goals of this new product technology.Significant process development and reliability assessment was required to develop this smart label application. This paper discusses the process development and reliability assessment that was completed to achieve a low cost flip chip on paper assembly process. The various characteristics of ACA made it an enabling technology for this smart label application. A bare (unbumped) flip chip––without a dielectric layer and conductive polymer bumps––was aligned and placed on the paper substrate with compressive force. A thin layer of anisotropically conductive adhesive was used to attach the IC chip to the conductive ink antenna on the paper substrate. The conductive adhesive underfills and cures in only seconds. Advantages of this environmentally preferred process include the elimination of additional curing processes and reduced equipment requirements as well as the reduction of total IC packaging thickness.  相似文献   

15.
用纳米银棒和颗粒制备高导电性油墨   总被引:2,自引:0,他引:2  
研制了一种高导电性油墨。首先,分别以乙二醇和N,N-二甲基甲酰胺为还原剂,还原硝酸银溶液得到纳米银棒和纳米银球形颗粒。用纳米银棒和纳米银球形颗粒混合银粉、双酚A环氧树脂/酚醛树脂、丁酮等其他助剂配制导电油墨。研究了不同固化温度、固化时间对所制油墨导电性能的影响。结果表明,在150℃固化20 min该油墨印刷的导电图形具有很致密的表面结构和丰富的三维导电网络,其体积电阻率达3.6 10–6.cm。  相似文献   

16.
环氧树脂–银粉复合导电银浆的制备   总被引:3,自引:1,他引:2  
导电油墨(导电银浆等)是以全印制电子技术制作印制电路板的关键材料。研究了以环氧树脂为连结剂、自制超细银粉为填料、聚乙二醇等材料为添加剂的复合导电银浆配方及制备方法。研究获得的最佳配方为:w(银粉)为70%~80%,其他各组分之间的质量比ζ(环氧树脂∶四氢呋喃∶固化剂∶聚乙二醇)=1.00∶(2.00~3.00)∶(0.20~0.30)∶(0.05~0.10)。在最佳配方范围内,复合导电银浆室温固化后电阻率小于100Ω/cm,有机物挥发少,对环境友好,符合实际应用要求。  相似文献   

17.
This paper presents the results from the evaluation of different types of flexible substrates for high-density flip chip application. In this work four different flexible substrates were used. The flex substrates were Espanex, Upilex and epoxy glass with 80 μm pitch and Upilex with 54 μm pitch. Two different test IC’s were used for both pitches. In test IC1 (80 μm pitch) and IC3 (54 μm pitch) the bumps were in one row and test IC2 (80 μm pitch) and IC4 (54 μm pitch) in two rows. The total amount of contacts in test IC1 was 190, in test IC2 173, in test IC3 293 and in test IC4 270. The anisotropically conductive adhesive that was used in the tests was epoxy based thermosetting adhesive film with conductive particles. The conductive particles in the adhesives were isolated soft metal-coated polymer particles. The contact resistance was measured using Kelvin four-point method and the continuity and series resistance using daisy chain structure. The reliability of the flip chip interconnections was tested in temperature cycling test and environmental test. Cross section samples were made to analyse the possible reason for failures. The results presented in this paper are from FLEXIL development project that is part of European Union IST research program.  相似文献   

18.
The reliability evaluation of Cu and Sn/Ni joined with isotropic conductive adhesives (ICAs) including Ag–Sn alloy fillers with or without Ag plating instead of Ag fillers was examined using tensile tests, electrical resistivity tests and microstructural observations. For an ICA, including Ag–Sn alloy fillers added to Sn–58wt%Bi fillers, the tensile strength was found to improve, but the electrical resistivity worsened with 150 °C heat exposure. An ICA, including, Ag–Sn alloy fillers with Ag plating, was able to maintain electrical resistivity after being subjected to 150 °C heat exposure. The Ag plating on the Ag–Sn fillers reacted with the Sn in the Ag–Sn fillers, leading to the joining of the fillers with each other though metallurgical connections, and the transformation of Ag into Ag3Sn within a 1-h curing time at 150 °C, since the Ag plating was microscopic and active. After heat exposure, the Sn distributed itself along the substrate/ICA interface by the diffusion of Sn though the connected fillers, and Cu3Sn formed at the Cu/ICA interface, in contrast with the Ag–Sn alloy fillers without Ag plating.  相似文献   

19.
Several flip-chip interconnection methods were compared by measuring interconnect resistance before and after exposure to environments including pre-conditioning, 85°C/85% RH exposure, 150°C storage, and 0–100°C temperature cycling. The goal was to determine an acceptable low-cost, reliable method for bumping and assembling chips to flexible or rigid substrates using flip-chip assembly techniques. Alternative flip-chip bumping methods are compared to a traditional wafer solder bumping method. Flip-chip interconnection methods evaluated included high lead content solder, silver filled conductive adhesive, and gold stud bumps. Under bump metallurgies evaluated included bare aluminum, evaporated Cr/Cr–Cu/Cu, and electroless nickel plating.  相似文献   

20.
Liquid metal elastomer (LME)—that is, liquid metal particles dispersed in elastomer—is a soft material that has useful electric, dielectric, and thermal properties. Two issues with LME are sought to be addressed: 1) the dense liquid metal (LM) particles can settle before curing of the elastomer, and 2) the LM particles are separated by a thin layer of insulating elastomer and therefore require some “mechanical sintering” to break this layer to create conductive paths. These issues are addressed using an LME containing elastic particles (LMEP). Elastic polydimethylsiloxane particles (PPs) and LM particles jam to prevent particle settling. Meanwhile, the PPs reduce the loading necessary to create conductive paths, thus decreasing the density and cost relative to LME. Surprisingly, the particles percolate into conductive paths prior to curing the LMEP but not in LME. The dielectric constant, electrical conductivity, and thermal conductivity of LMEPs are investigated by changing the volume fraction of LM particles, polydimethylsiloxane pre-polymer and PPs, and propose an LMEP with the optimal ratio. In addition, LMEP-based sensors and circuits are demonstrated for wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号