首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ergonomics》2012,55(15):1627-1638
The object of the current study was to determine whether static contraction of proximal musculature has an effect on the blood flow more distally in the upper extremity. Static contractions of muscles in the neck shoulder region at three levels (relaxed, shoulders elevated and shoulders elevated loaded with 4.95 kg each) were combined with intermittent pinch forces at 0, 10 and 25% of the maximum voluntary contraction (MVC). Blood flow to the forearm was measured with Doppler ultrasound. Myoelectric activity of the forearm and neck-shoulder muscles was recorded to check for the workload levels. Across all levels of shoulder load, blood flow increased significantly with increasing pinch force (21% at 10% MVC and by 44% at 25% MVC). Blood flow was significantly affected by shoulder load, with the lowest blood flow at the highest shoulder load. Interactions of pinch force and shoulder load were not significant. The myoelectric activity of forearm muscles increased with increasing pinch force. The activation of the trapezius muscle decreased with increasing pinch force and increased with increasing shoulder load. The precise mechanisms accounting for the influence of shoulder load remains unclear. The results of this study indicate that shoulder load might influence blood flow to the forearm.  相似文献   

2.
    
Recent studies have suggested that ergonomic factors may contribute to risks experienced by overhead crane operators. However, there are few studies that provide a comprehensive overview of the physical demands of overhead crane operation. This study aimed to provide this information by quantifying muscular, postural, and upper limb movement demands of overhead crane operation including examination of muscle activation and trunk posture by task. Trunk posture, upper limb movement demands and muscle activation in the trunk and upper limbs were quantified for seven overhead crane operators. Trunk posture was quantified using trunk angle and joystick motion requirements were determined using camera data. Muscle activation was measured bilaterally using surface EMG for the upper trapezii, anterior deltoids, posterior deltoids, biceps brachii, triceps brachii, flexor carpi radialis and erector spinae. Lastly, joystick force requirements were assessed using a spring scale. High upper limb and trunk muscle loading were observed when compared to joystick use in other heavy machinery, in part due to the forward, trunk-flexed position required to adequately view the workspace, and the increased force requirements of the joysticks. Joystick input force requirements were 9–31 N for the right-hand joystick and 11–40 N for the left-hand joystick. Operators maintained a forward trunk flexion (>20°) for all subtasks which suggests that trunk posture might play a role in sustained trunk muscle activation. Results suggest that the primary issue with overhead crane cab operation is upper limb and trunk muscle loading. Results confirm the need to investigate muscle load reduction strategies such as camera systems to help reduce the need for trunk flexion. Other design modification suggestions include reducing the joystick input force and displacement requirements coupled with potentially distributing the machine functions more evenly across the right and left controllers.  相似文献   

3.
In recent years, isokinetic strengths (dynamic strength exertions at constant speed) have almost replaced isometric (static) strengths in laboratory studies as measures of a person's strength exertion capabilities. Many industries are also showing a keen interest in replacing static strength usage with dynamic strength usage. The increasing acceptance of isokinetic strengths as a more valid and accurate measure of people's strength exertion capability has necessitated the development of isokinetic strength databases. This paper presents one-arm isokinetic pull strength profiles of males, engaged in infrequent exertion in a horizontal plane, as a function of posture (sitting and standing), reach distance (25, 40, and 55 cm for the sitting posture; 45, 65, and 85 cm for the standing posture), and angle of the preferred (stronger) arm from the frontal plane (0—frontal plane, 30, 60, 90, 120, and 150 deg). Twenty-five males participated in the study. The results indicated that more strength is exerted while standing. The strength also increases with the reach distance. The strength exertion becomes stronger as the angle of the arm increases to 90° from the frontal plane (i.e., the arm moves to the sagittal plane) and then weakens.  相似文献   

4.
5.
《Ergonomics》2012,55(11):1341-1352
EMG was recorded with surface electrodes from the trapezius and deltoid muscles during a static endurance test at approximately 20% of maximal voluntary contraction. Objective parameters for localized muscular fatigue were derived from the time course of the root mean square (RMS) and mean power frequency (MPF) of the EMG recordings. Isotonic regression is introduced as a tool for assessment of such parameters. The most pronounced sign of fatigue for trapezius was an increase in the RMS values, while for deltoid it was a decrease in the MPF values. This could be explained by the different functions of the two muscles. The endurance time for a group of 11 women in industrial work with repetitive short-cycled work tasks who were diagnosed with neck/shoulder disorders (tension neck) was significantly shorter (p<0·05) than for a group with the same work, but without neck/shoulder disorders (n=ll), and shorter than for a control group (n=ll). Regarding the EMG fatigue measures, there were no significant differences between the three groups. We did not find any relationships between endurance time and the EMG parameters. The results indicate that neck/shoulder disorders were not associated with divergent mechanisms for developing fatigue in the muscles, as recorded with surface EMG.  相似文献   

6.
The aim was to evaluate (1) the physical workload on neck and upper limb in computer-aided design (CAD) work; (2) the impact of two applications (PROFESSIONAL-CADAM and PRO/Engineering) and (3) two input devices (computer mouse and keyboard), as well as (4) sitting and standing work positions. Fifteen CAD operators were interviewed and examined physically. For nine subjects, the physical workload was measured: electromyography (EMG) of trapezius and forearm extensor muscles, inclinometry of the head, the upper back and upper arms, as well as wrist goniometry. The muscular load was low in CAD work, but the inter-individual variation was considerable. Neither the positions were extreme, nor the movements. The applications, per se, did not have a large impact on the workload, but because of the need for different input devices the effect was strong. Using a keyboard meant higher angular velocities than using a mouse. Hence, when choosing a new software, which requires mainly a mouse as input device, this has to be balanced against the risk of disorders.  相似文献   

7.
Heavy backpacks are often used in extreme environments, for example by military during combat, therefore completion of tasks quickly and efficiently is of operational relevance. The purpose of this study was to quantify hemodynamic parameters (brachial artery Doppler and microvascular flow by photoplethysmography; tissue oxygenation by near-infrared spectroscopy; arterial oxygen saturation by pulse oximeter) and sensation in upper extremities and hands (Semmes-Weinstein monofilament test and 2-point discrimination test) while wearing a loaded backpack (12 kg) in healthy adults for 10 min. All values were compared to baseline before wearing a backpack. Moderate weight loaded backpack loads significantly decreased upper extremity sensation as well as all macrovascular and microvascular hemodynamic values. Decreased macrovascular and microvascular hemodynamics may produce neurological dysfunction and consequently, probably affect fine motor control of the hands.  相似文献   

8.
《Ergonomics》2012,55(7):1110-1126
Most existing evidence regarding the effects of age on muscular fatigue has focused on prolonged isometric contractions, repeated maximum dynamic contractions and individuals beyond traditional retirement age (>65 years). In the present study, age-related differences in muscle fatigue during submaximal dynamic efforts were examined. There were 24 younger (18–25 years) and 24 older (55–65 years) participants, all of whom were healthy and active, with equal numbers of each gender within each age group. Participants performed repetitive, intermittent shoulder abductions until exhaustion, at peak moments of 30% and 40% of individual maximum voluntary isokinetic contraction (MVIC) and with cycle durations of 20 and 40 s. Fatigue development was determined based on changes in MVIC, electromyographic (EMG) signals and ratings of perceived discomfort (RPD). Following the exhaustive exercises, strength recovery was monitored using a series of MVICs over a 15-min period. Results indicated the existence of an age-related fatigue resistance, with the older group demonstrating significantly slower rates of MVIC decline and RPD increase and smaller modifications in EMG-based fatigue measures. These age effects were generally more pronounced at the higher effort level. Main effects of effort level and cycle duration were also significant, while gender effects appeared to be marginal. Rates of strength recovery were not significantly influenced by age. In addition, the utility of standard EMG-based fatigue measures was assessed. Findings indicated that time-dependent changes in static and dynamic EMG-based measures were roughly comparable in terms of sensitivity and variability, supporting the use of standard EMG analyses for fatigue monitoring during intermittent dynamic contractions.  相似文献   

9.
    
This study aims to elucidate the relationship between the wrist and finger movements and forearm muscle activation of twelve young people (age: 21.1 ± 0.76 years, nine men and three women) with different typing skills. We hypothesize that skilled typists (STs) could move their wrist and finger joints faster than unskilled typists (UTs) because they could efficiently use their muscles according to the activity characteristics of the flexors and extensors of the wrist joint. We measured wrist and finger movements using a 3D motion capture system and forearm muscle activation using surface electromyography during the typing task. We analyzed the entire task and the time when the U key was entered during the same task. The angular velocity of the wrist and finger flexion/extension and the muscle activation of the wrist flexors was higher in the STs than in the UTs, while the muscle activation of the wrist extensors was higher in the latter than that in the former. Our results showed that STs may have used their forearm muscles to take advantage of the physical characteristics of the keys and the spring characteristics of their muscles and tendons. It was suggested that they placed less mechanical stress on their finger muscles and tendons when pressing and releasing the keys.  相似文献   

10.
《Ergonomics》2012,55(9):1214-1226
Abstract

Complex repetitive tasks are common in the workplace and have been associated with upper extremity disorders. The purpose of this study was to examine the progressive effects of highly repetitive work on joint kinematics and muscle activity of the trunk and upper extremity. Fifteen healthy men performed 60 one-minute cycles of 4 simulated automotive-related tasks. Electromyography of eight muscles and kinematics of the trunk and right upper extremity were collected. Data were analysed at 12-min intervals and divided into a complete work cycle. The time to complete the work cycle decreased by 6.3?s over the trials. Peak shoulder flexion decreased and peak elbow flexion increased during the work cycle. Muscle activity magnitude and variability was influenced by time during the repetitive tasks. This study found adaptations to highly repetitive but light work in only 1?h; redistributing muscle demands within the shoulder over time may reduce muscle fatigue development.

Practitioner Summary: While the work was not strenuous, we were able to demonstrate muscular and postural adaptations in a single hour of simulated work. By evaluating both the whole work cycle and the sub-tasks, we aim to develop new methods for evaluating the risk of complex tasks in prolonged repetitive work.  相似文献   

11.
This field study examined associations between workplace stressors and office workers' computer use patterns. We collected keyboard and mouse activities of 93 office workers (68F, 25M) for approximately two work weeks. Linear regression analyses examined the associations between self-reported effort, reward, overcommitment, and perceived stress and software-recorded computer use duration, number of short and long computer breaks, and pace of input device usage. Daily duration of computer use was, on average, 30 min longer for workers with high compared to low levels of overcommitment and perceived stress. The number of short computer breaks (30 s–5 min long) was approximately 20% lower for those with high compared to low effort and for those with low compared to high reward. These outcomes support the hypothesis that office workers' computer use patterns vary across individuals with different levels of workplace stressors.  相似文献   

12.
《Ergonomics》2012,55(1):74-82
This study quantified postures of users working on a notebook computer situated in their lap and tested the effect of using a device designed to increase the height of the notebook when placed on the lap. A motion analysis system measured head, neck and upper extremity postures of 15 adults as they worked on a notebook computer placed on a desk (DESK), the lap (LAP) and a commercially available lapdesk (LAPDESK). Compared with the DESK, the LAP increased downwards head tilt 6° and wrist extension 8°. Shoulder flexion and ulnar deviation decreased 13° and 9°, respectively. Compared with the LAP, the LAPDESK decreased downwards head tilt 4°, neck flexion 2°, and wrist extension 9°. Users reported less discomfort and difficulty in the DESK configuration. Use of the lapdesk improved postures compared with the lap; however, all configurations resulted in high values of wrist extension, wrist deviation and downwards head tilt.

Statement of Relevance: This study quantifies postures of users working with a notebook computer in typical portable configurations. A better understanding of the postures assumed during notebook computer use can improve usage guidelines to reduce the risk of musculoskeletal injuries  相似文献   

13.
《Ergonomics》2012,55(3):280-294
The aim was to examine lumbar spine kinematics, spinal joint loads and trunk muscle activation patterns during a prolonged (2 h) period of sitting. This information is necessary to assist the ergonomist in designing work where posture variation is possible—particularly between standing and various styles of sitting. Joint loads were predicted with a highly detailed anatomical biomechanical model (that incorporated 104 muscles, passive ligaments and intervertebral discs), which utilized biological signals of spine posture and muscle electromyograms (EMG) from each trial of each subject. Sitting resulted in significantly higher (p< 0.001) low back compressive loads (mean±SD 1698±467 N) than those experienced by the lumbar spine during standing (1076±243 N). Subjects were equally divided into adopting one of two sitting strategies: a single ‘static’ or a ‘dynamic’ multiple posture approach. Within each individual, standing produced a distinctly diVerent spine posture compared with sitting, and standing spine postures did not overlap with flexion postures adopted in sitting when spine postures were averaged across all eight subjects. A rest component (as noted in an amplitude probability distribution function from the EMG) was present for all muscles monitored in both sitting and standing tasks. The upper and lower erector spinae muscle groups exhibited a shifting to higher levels of activation during sitting. There were no clear muscle activation level diVerences in the individuals who adopted diVerent sitting strategies. Standing appears to be a good rest from sitting given the reduction in passive tissue forces. However, the constant loading with little dynamic movement which characterizes both standing and sitting would provide little rest/change for muscular activation levels or low back loading.  相似文献   

14.
Advances in police-specific technology have led to changes in work layout and physical occupational demands of mobile police officers. This study investigated the influence of police cruiser compartment configuration on perceived discomfort, muscle activation, shoulder kinematics, and typing performance during simulated police patrol. Participants completed a one-hour session including simulated driving and 2-min typing trials in a standard compartment configuration with a fixed mobile data terminal (MDT) location (ST), and in a modified compartment configuration with an MDT in front of the user and a rearward translated seat (MOD). The MOD configuration resulted in reductions of 55–65% in perceived shoulder discomfort, up to 3.4% MVC in shoulder muscle demands, and more neutral humeral orientations (shoulder elevation reduced by 13–25°). These improvements associated with the MOD configuration may have ergonomic implications for future police car designs, particularly as new technology is introduced in the mobile environment and advanced solutions are sought.  相似文献   

15.
    
The flexion–relaxation phenomenon (FRP) in back muscles is related to the lower back load. Although the FRP has been widely discussed, the effect of wearing jeans—a common attire in workplaces—on the FRP is unexplored. This study recruited 20 male participants with high and low flexibilities (10 each) and measured the related muscle activity and lumbopelvic movement at five trunk flexion angles (0°–90°) when wearing two types of bottom wears (swim trunks and fit jeans). Results revealed that the bottom wear type and trunk angle significantly affected all responses, whereas flexibility affected only erector spinae and hamstring activities. Participants with high flexibility and wearing swim trunks exhibited greater erector spinae activity than did those with low flexibility and wearing jeans. Thus, those who have low flexibility or are wearing jeans are likely to experience more activity reductions in erector spinae. However, the result with hamstring activity was the opposite. Wearing jeans limited participants’ pelvic rotation, forcing them to bend their lumbar spine further to complete trunk flexion, thus reducing erector spinae activity. A looser attire should be chosen to avoid constraining the pelvic rotation when work involves a deep trunk flexion.Relevance to industryPeople wearing jeans have limited pelvic movement and decreased erector spinae activity during deep trunk flexion, and this may further strain their interspinous ligaments. Thus, people should not wear fit jeans when in workplaces where their work involves stooping or trunk flexion exceeding 45° to minimize the load on their lower back.  相似文献   

16.
《Ergonomics》2012,55(9):1932-1940
The purpose of the study was to compare muscular activity levels and sitting posture displayed by 10 children (mean age =4·7 years) when performing tracing tasks while seated at a traditional work station (level desk top, 5° backward sloping seat) and at an ergonomically designed work station (15° sloping desk top, 15° forward sloping seat). EMG profiles of latissimus dorsi (LD), erector spine (ES), and superior trapezius (ST) were sampled using Medi-trace disposable surface electrodes for 10min on the non-dominant side. Muscle activity was sampled (1000 Hz) every 2min for 5000 ms while the subjects performed the tracing tasks at each station. Raw EMG signals of the five trials for each muscle were processed by removing signal offset, full-wave rectification, and integration. The subjects' posture was monitored from a lateral view using a Panasonic VHS video camera while the children were seated at each work station. Neck flexion angle and the angle between the torso and thigh (hip angle) were manually sampled from the video images each 1 min as an indication of the posture adopted by the subjects during the tracing tasks. Use of f-tests for dependent means indicated that there was no significant difference in either mean ES or ST muscle activity as a function of work station design. However, subjects demonstrated significantly less LD activity when seated at the ergonomic work station (mean = 20·9 V ms) compared with the traditional work station (mean = 24·4 V ms, t = ? 2·88, p = 0·018). When seated at the ergonomically designed work station, subjects demonstrated less neck flexion (mean = 34·4°) and a significantly larger hip angle (mean = 107·8°, t= ? 3·46, p = 0·003) than when seated at the traditional work station (neck flexion = 38·7°, hip angle = 95·5°). It was concluded that use of the ergonomic work station could assist in maintaining a more efficient anatomical alignment of young children when sitting and writing.  相似文献   

17.
《Ergonomics》2012,55(1):45-61
In order to determine differences in biomechanical risk factors across computer tasks, a repeated measures laboratory experiment was completed with 30 touch-typing adults (15 females and 15 males). The participants completed five different computer tasks: typing text, completing an html-based form with text fields, editing text within a document, sorting and resizing objects in a graphics task and browsing and navigating a series of intranet web pages. Electrogoniometers and inclinometers measured wrist and upper arm postures, surface electromyography measured muscle activity of four forearm muscles and three shoulder muscles and a force platform under the keyboard and force-sensing computer mouse measured applied forces. Keyboard-intensive tasks were associated with less neutral wrist postures, larger wrist velocities and accelerations and larger dynamic forearm muscle activity. Mouse-intensive tasks (graphics and intranet web page browsing) were associated with less neutral shoulder postures and less variability in forearm muscle activity. Tasks containing a mixture of mouse and keyboard use (form completion and text editing) were associated with higher shoulder muscle activity, larger range of motion and larger velocities and accelerations of the upper arm. Comparing different types of computer work demonstrates that mouse use is prevalent in most computer tasks and is associated with more constrained and non-neutral postures of the wrist and shoulder compared to keyboarding.  相似文献   

18.
The study aims were, in a population of university students, staff, and faculty (n = 140), to: 1) determine the distribution of seven measures of mobile device use; 2) determine the distribution of musculoskeletal symptoms of the upper extremity, upper back and neck; and 3) assess the relationship between device use and symptoms. 137 of 140 participants (98%) reported using a mobile device. Most participants (84%) reported pain in at least one body part. Right hand pain was most common at the base of the thumb. Significant associations found included time spent internet browsing and pain in the base of the right thumb (odds ratio 2.21, 95% confidence interval 1.02–4.78), and total time spent using a mobile device and pain in the right shoulder (2.55, 1.25–5.21) and neck (2.72, 1.24–5.96). Although this research is preliminary, the observed associations, together with the rising use of these devices, raise concern for heavy users.  相似文献   

19.
《Ergonomics》2012,55(14):1456-1469
In order to determine differences in biomechanical risk factors across different mouse positions within computer workstations a repeated measures laboratory study was completed with 30 adults (15 females 15 males). The subjects performed mouse-intensive tasks during two experiments. One experiment examined three mouse positions: a standard mouse (SM) position with the mouse directly to the right of the keyboard; a central mouse (CM) position with the mouse between the keyboard and the body, positioned in the body's mid-sagittal plane; a high mouse (HM) position, which simulated using a keyboard drawer with the mouse on the primary work surface. The second experiment compared two mouse positions: the SM position and a more central position using a keyboard without a number keypad (NM). Electrogoniometers and inclinometers measured wrist and upper arm postures and surface electromyography measured muscle activity of four forearm muscles and three shoulder muscles. The CM mouse position was found to produce the most neutral upper extremity posture across all measures. The HM position produced the least neutral posture and resulted in the highest level of muscle activity. Compared to the SM position, the NM position reduced wrist extension slightly and promoted a more neutral shoulder posture. Little difference in muscle activity was observed between the SM and NM positions. In conclusion, of these alternative mouse positions, the HM position was the least desirable, whereas the CM position reduced overall awkward postures associated with mouse-intensive computer tasks.  相似文献   

20.
The purpose of this study was to quantify the effects of concurrent physical and mental demands on the upper extremity muscle activity during static exertions. Seventeen healthy participants performed isometric upper extremity exertions at five levels of physical intensity (5%, 25%, 45%, 65%, and 85% maximum voluntary contraction (MVC)) in the presence and absence of a mental task (Stroop color word test). Muscular responses were quantified using surface electromyography (EMG) and motor performance was measured through force fluctuations. Subjective assessments were obtained through the NASA-TLX tool and the Borg CR-10 Scale. In general, a decrease in mean anterior and posterior deltoid muscle activity and co-contraction index (CCI) of the shoulder was observed in the presence of the mental task. However, these changes were more prominent at higher physical exertion levels compared to the lower levels. Furthermore, the additional mental task resulted in decreased upper and lower arm muscle activity, specifically at the 45% MVC level. Motor performance improved at the middle exertion levels, but was adversely affected by the mental task at higher exertion levels. Decreased motor performance at higher loads may have been a result of decreased muscular effort to maintain the loads in a steady posture. Both mental and physical demand adversely affected the NASA-TLX ratings, however, ratings using the Borg CR-10 Scale were only sensitive to changes in physical demand.

Relevance to industry

Workplace tasks, such as jobs performed by healthcare workers, assembly line workers, and computer operators, have become more multidimensional in the recent years; with workers experiencing combined physical and mental demands in their daily jobs, yet their effect on muscular responses is not clearly understood. Results from this study suggest that certain physical exertion levels are more susceptible to interference by mental demands than others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号