首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
We investigated asthma and atopy in relation to microbial and plasticizer exposure. Pupils in eight primary schools in Uppsala (Sweden) answered a questionnaire, 1014 (68%) participated. Totally, 7.7% reported doctor-diagnosed asthma, 5.9% current asthma, and 12.2% allergy to pollen/pets. Wheeze was reported by 7.8%, 4.5% reported daytime breathlessness, and 2.0% nocturnal breathlessness. Measurements were performed in 23 classrooms (May-June), 74% had <1000 ppm CO(2) indoors. None had visible mold growth or dampness. Mean total microbial volatile organic compound (MVOC) concentration was 423 ng/m(3) indoors and 123 ng/m(3) outdoors. Indoor concentration of TMPD-MIB (2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, Texanol) and TMPD-DIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate, TXIB), two common plasticizers, were 0.89 and 1.64 microg/m(3), respectively. MVOC and plasticizer concentration were correlated (r = 0.5; P < 0.01). Mold concentration was 360 cfu/m(3) indoors and 980 cfu/m(3) outdoors. At higher indoor concentrations of total MVOC, nocturnal breathlessness (P < 0.01) and doctor-diagnosed asthma (P < 0.05) were more common. Moreover, there were positive associations between nocturnal breathlessness and 3-methylfuran (P < 0.01), 3-methyl-1-butanol (P < 0.05), dimethyldisulfide (P < 0.01), 2-heptanone (P < 0.01), 1-octen-3-ol (P < 0.05), 3-octanone (P < 0.05), TMPD-MIB (P < 0.05), and TMPD-DIB (P < 0.01). TMPD-DIB was positively associated with wheeze (P < 0.05), daytime breathlessness (P < 0.05), doctor-diagnosed asthma (P < 0.05), and current asthma (P < 0.05). In conclusion, exposure to MVOC and plasticizers at school may be a risk factor for asthmatic symptoms in children. PRACTICAL IMPLICATIONS: Despite generally good ventilation and lack of visible signs of mold growth, we found an association between respiratory symptoms and indoor MVOC concentration. In addition, we found associations between asthmatic symptoms and two common plasticizers. The highest levels of MVOC, TMPD-MIB, and TMPD-DIB were found in two new buildings, suggesting that material emissions should be better controlled. As MVOC and plasticizers concentrations were positively correlated, while indoor viable molds and bacteria were negatively correlated, it is unclear if indoor MVOC is an indicator of microbial exposure. Further studies focusing on health effects of chemical emissions from indoor plastic materials, including PVC-floor coatings, are needed.  相似文献   

2.
In the Swedish Building Energy, Technical Status and Indoor environment study, a total of 1160 adults from 605 single‐family houses answered a questionnaire on respiratory health. Building inspectors investigated the homes and measured temperature, air humidity, air exchange rate, and wood moisture content (in attic and crawl space). Moisture load was calculated as the difference between indoor and outdoor absolute humidity. Totally, 7.3% were smokers, 8.7% had doctor’ diagnosed asthma, 11.2% current wheeze, and 9.5% current asthma symptoms. Totally, 50.3% had respiratory infections and 26.0% rhinitis. The mean air exchange rate was 0.36/h, and the mean moisture load 1.70 g/m3. Damp foundation (OR=1.79, 95% CI 1.16‐2.78) was positively associated while floor constructions with crawl space (OR=0.49, 95% CI 0.29‐0.84) was negatively associated with wheeze. Concrete slabs with overlying insulation (OR=2.21, 95% CI 1.24‐3.92) and brick façade (OR=1.71, 95% CI 1.07‐2.73) were associated with rhinitis. Moisture load was associated with respiratory infections (OR=1.21 per 1 g/m3, 95% CI 1.04‐1.40) and rhinitis (OR=1.36 per 1 g/m3, 95% CI 1.02‐1.83). Air exchange rate was associated with current asthma symptoms (OR=0.85 per 0.1/h, 95% CI 0.73‐0.99). Living in homes with damp foundation, concrete slabs with overlying insulation, brick façade, low ventilation flow, and high moisture load are risk factors for asthma, rhinitis, and respiratory infections.  相似文献   

3.
Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. PRACTICAL IMPLICATIONS: Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious.  相似文献   

4.
An exposure study of children (aged 10-12 years) living in Santiago, Chile, was conducted. Personal, indoor and outdoor fine and inhalable particulate matter (< 2.5 .m in diameter, PM2.5 and < 10 microm in diameter, PM10, respectively), and nitrogen dioxide (NO2) were measured during pilot (N = 8) and main (N = 20) studies, which were conducted during the winters of 1998 and 1999, respectively. For the main study, personal, indoor and outdoor 24-h samples were collected for five consecutive days. Similar mean personal, indoor and outdoor PM2.5 concentrations (69.5, 68.5 and 68.1 microg/m3, respectively) were found. However, for coarse particles (calculated as the difference between measured PM10 and PM2.5, PM2.5-10), indoor and outdoor levels (35.4 and 47.4 microg/m3) were lower than their corresponding personal exposures (76.3 microg/m3). Indoor and outdoor NO2 concentrations were comparable (35.8 and 36.9 ppb) and higher than personal exposures (25.9 ppb). Very low ambient indoor and personal O3 levels were found, which were mostly below the method's limit of detection (LOD). Outdoor particles contributed significantly to indoor concentrations, with effective penetration efficiencies of 0.61 and 0.30 for PM2.5 and PM2.5-10, respectively. Personal exposures were strongly associated with indoor and outdoor concentrations for PM2.5, but weakly associated for PM2.5-10. For NO2, weak associations were obtained for indoor-outdoor and personal-outdoor relationships. This is probably a result of the presence of gas cooking stoves in all the homes. Median I/O, P/I and P/O ratios for PM2.5 were close to unity, and for NO2 they ranged between 0.64 and 0.95. These ratios were probably due to high ambient PM2.5 and NO2 levels in Santiago, which diminished the relative contribution of indoor sources and subjects' activities to indoor and personal PM2.5 and NO2 levels.  相似文献   

5.
The aim was to study asthma and allergy in relation to diet and the school environment. Pupils (5-14 years) in eight schools received a questionnaire, 1014 participated (68%). Settled dust was collected on ALK-filters and analyzed for allergens from cat (Fel d 1), dog (Can f 1), horse (Equ cx), house dust mites (Der p 1, Der f 1), and cockroach (Bla g 1) by ELISA. In total, 6.8% reported cat allergy, 4.8% dog allergy, 7.7% doctor's diagnosed asthma and 5.9% current asthma, and 7.8% reported wheeze. Current asthma was less common among those consuming more fresh milk (P < 0.05) and fish (P < 0.01). Poly-unsaturated fatty acids was associated with more wheeze (P < 0.05), olive oil was associated with less doctors' diagnosed asthma (P < 0.05). Totally, 74% of the classrooms had mean CO(2) <1000 ppm. The median concentration per gram dust was 860 ng/g Fel d 1, 750 ng/g Can f 1 and 954 U/g Equ cx. Horse allergen was associated with more wheeze (P < 0.05), daytime breathlessness (P < 0.05), current asthma (P < 0.05) and atopic sensitization (P < 0.05). Dog allergen was associated with wheeze (P < 0.05) and daytime breathlessness (P < 0.05). The associations between allergens and respiratory symptoms were more pronounced among those consuming margarine, not consuming butter, and with a low intake of milk. In conclusion, cat, dog and horse allergens in schools could be a risk factor for asthma and atopic sensitization, and dietary factors may interact with the allergen exposure. PRACTICAL IMPLICATIONS: Previous school studies performed by us in mid-Sweden, showed that most classrooms did not fulfill the ventilation standards. In this study, most of the classrooms fulfilled the ventilation standard, but despite that had widespread allergen contamination. Most previous studies have focused on cat allergen, but our study has shown that also dog and horse allergens can be risk factors for asthma and allergy in schools. As allergens are transported from other environments, mainly the home environment, the main prevention should be to minimize transfer of allergens. This could be achieved by reducing contacts with furry pets and horses, or using different clothes at home and at school (e.g. school uniforms). Increased cleaning in the schools may reduce allergen levels, but the efficiency of this measure must be evaluated in further intervention studies. Finally, our study supports the view that dietary habits among pupils should not be neglected and interaction between dietary factors and indoor allergen exposure needs to be further investigated.  相似文献   

6.
Zhao ZH  Elfman L  Wang ZH  Zhang Z  Norbäck D 《Indoor air》2006,16(6):404-413
We compared the school environment, asthma and allergy in 10 schools in Taiyuan, China, with eight schools in Uppsala, Sweden. In total 2193 pupils (mean age 13 years) participated. Chinese pupils had more respiratory symptoms, particularly daytime breathlessness after exercise (29.8% vs. 7.1%; P < 0.001), while cat allergy (1.2% vs. 6.6%; P < 0.001) and dog allergy (1.3% vs. 4.0%; P < 0.01) was less common. Cumulative incidence of asthma (1.8% vs. 9.5%; P < 0.001) and doctor's diagnosed asthma (1.2% vs. 9.0%; P < 0.001) were less common in China, indicating an under-diagnosis of asthma. Chinese classrooms were colder (mean 14.7 vs. 21.4 degrees C), more humid (mean 42% vs. 31% RH) and had higher CO2-levels (mean 2211 vs. 761 ppm). Levels of cat (Fel d1), dog (Can f1) allergens were low in settled dust from China (< 200 ng/g dust), but high in airborne dust on Petri-dishes (GM 16.8 ng/m2/day for Fel d1 and 17.7 for Can f1). The Swedish settled dust contained cat, dog and horse allergens in high levels (median 1300 ng/g, 1650 ng/g, 1250 U/g dust, respectively). In conclusion, there were large differences in the school environment, and in respiratory symptom and allergy. Allergen measurements in settled dust only may largely underestimate the classroom exposure. Practical Implications There is a need to improve the school environment, both in China and Sweden. The Swedish schools contained high levels of cat, dog and horse allergens and more amounts of open shelves and textiles that can accumulate dust and allergens. The air measurements indicated that Chinese schools may contain significant amounts of cat and dog allergen, and analysis of settled dust only may not reflect the true allergen exposure. Since the Chinese schools had no mechanical ventilation, they could not fulfill the ventilation standard in winter, and hence there is a need for improving the ventilation. The great discrepancy between respiratory symptoms and reports on asthma, and the high prevalence of attacks of breathlessness without wheeze, may have implication for future questionnaire studies on asthma in China.  相似文献   

7.
Indoor and outdoor BTX levels in German cities   总被引:4,自引:0,他引:4  
On the basis of the ongoing study INGA (INdoor exposure and Genetics in Asthma), Germany's most detailed and standardized epidemiological study on indoor exposure to both allergens in house dust and volatile compounds in the air of the home environment has been performed. The purpose of this paper is to describe the spatial and seasonal variability of indoor and outdoor BTX (Benzene, toluene, ethyl benzene, ortho-xylene, meta- and para-xylene) concentrations for the study period from June 1995 to November 1996. Within this framework, air concentrations of volatile organic compounds (BTX) were measured in 204 households in Erfurt (Eastern Germany) and 201 households in Hamburg (Western Germany). BTX sampling was conducted over one week using OVM 3500 passive diffusion sampling devices in the indoor (living room and bedroom) and outdoor environment (outside the window of the living room). Indoor and outdoor median BTX concentrations in Erfurt were slightly, but significantly higher than those in Hamburg. This gap was most pronounced in the levels of indoor toluene (37.3 microg/m3 for Erfurt and 20.5 microg/m3 for Hamburg, P < 0.0001). In both cities, winter indoor and outdoor concentrations for the five compounds exceeded the summer values. Outdoor concentrations of ethyl benzene and ortho-xylene were very low (50% < L.D.). In general, the indoor BTX air concentrations were significantly higher than the outdoor concentra- tions, the lowest I/O ratios were found in the case of benzene. Living room and bedroom values for the five compounds were highly correlated (Spearman coefficient 0.5-0.9). Despite the better insulation of the homes in West Germany, no indication for the expected higher indoor concentrations of BTX in the West could be found. The strong and yet undiscovered indoor source for toluene in East Germany might lead to a further increase in the indoor air load in those homes in the East, which undergo renovations which will lead to improved insulation.  相似文献   

8.
Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa,Mexico   总被引:6,自引:0,他引:6  
Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments.  相似文献   

9.
Kim JL  Elfman L  Norbäck D 《Indoor air》2007,17(2):122-129
We studied reports on respiratory symptoms, asthma and atopic sensitisation in relation to allergen contamination in Korean schools and compared with data from a previous Swedish study performed in eight primary schools. Korean pupils (n = 2365) in 12 primary schools first completed a questionnaire. Then airborne and settled dust were collected from 34 classrooms and analyzed for allergens by ELISA. In both countries, boys reported more symptoms. The prevalence of wheeze was similar, while daytime [odds ratio (OR) = 14.0, 95% confidence interval (CI) = 9.0-21.9] and nocturnal breathlessness (OR = 3.1, 95% CI = 1.5-6.4) were much higher among Korean students. In Korean schools, dog allergen (Can f 1) was the most common followed by mite allergen (Der f 1), while cat (Fel d 1), dog, and horse allergen (Equ cx) were abundant in Sweden. Moreover, CO(2) levels were high in most Korean schools (range 907-4113 ppm). There was an association between allergen levels in dust and air samples, and number of pet-keepers in the classrooms. In conclusion, allergen contamination in Korean schools may be an important public issue. PRACTICAL IMPLICATIONS: This study showed that furry pet allergen contamination was common in both Korean and Swedish schools. In addition, house dust-mite (Der f 1) allergen contamination was common in Korean schools, probably because of transport of allergen from other environments. Transfer should therefore be minimized. Korean schools had high CO(2) levels and the concept of mechanical ventilation should be introduced. Measurement of airborne allergen levels is quite new and seems to be a more convenient and correct way to monitor allergen exposure in classrooms.  相似文献   

10.
In Baguio City, Philippines, a mountainous city of 252,386 people where 61% of motor vehicles use diesel fuel, ambient particulate matter <2.5 microm (PM(2.5)) and <10 microm (PM(10)) in aerodynamic diameter and carbon monoxide (CO) were measured at 30 street-level locations for 15 min apiece during the early morning (4:50-6:30 am), morning rush hour (6:30-9:10 am) and afternoon rush hour (3:40-5:40 pm) in December 2004. Environmental observations (e.g. traffic-related variables, building/roadway designs, wind speed and direction, etc.) at each location were noted during each monitoring event. Multiple regression models were formulated to determine which pollution sources and environmental factors significantly affect ground-level PM(2.5), PM(10) and CO concentrations. The models showed statistically significant relationships between traffic and early morning particulate air pollution [(PM(2.5)p=0.021) and PM(10) (p=0.048)], traffic and morning rush hour CO (p=0.048), traffic and afternoon rush hour CO (p=0.034) and wind and early morning CO (p=0.044). The mean early morning, street-level PM(2.5) (110+/-8 microg/m3; mean+/-1 standard error) was not significantly different (p-value>0.05) from either rush hour PM(2.5) concentration (morning=98+/-7 microg/m3; afternoon=107+/-5 microg/m3) due to nocturnal inversions in spite of a 100% increase in automotive density during rush hours. Early morning street-level CO (3.0+/-1.7 ppm) differed from morning rush hour (4.1+/-2.3 ppm) (p=0.039) and afternoon rush hour (4.5+/-2.2 ppm) (p=0.007). Additionally, PM(2.5), PM(10), CO, nitrogen dioxide (NO2) and select volatile organic compounds were continuously measured at a downtown, third-story monitoring station along a busy roadway for 11 days. Twenty-four-hour average ambient concentrations were: PM(2.5)=72.9+/-21 microg/m3; CO=2.61+/-0.6 ppm; NO2=27.7+/-1.6 ppb; benzene=8.4+/-1.4 microg/m3; ethylbenzene=4.6+/-2.0 microg/m3; p-xylene=4.4+/-1.9 microg/m3; m-xylene=10.2+/-4.4 microg/m3; o-xylene=7.5+/-3.2 microg/m3. The multiple regression models suggest that traffic and wind in Baguio City, Philippines significantly affect street-level pollution concentrations. Ambient PM(2.5) levels measured are above USEPA daily (65 microg/m3) and Filipino/USEPA annual standards (15 microg/m3) with concentrations of a magnitude rarely seen in most countries except in areas where local topography plays a significant role in air pollution entrapment. The elevated pollution concentrations present and the diesel-rich nature of motor vehicle emissions are important pertaining to human exposure and health information and as such warrant public health concern.  相似文献   

11.
Occupational exposure to trihalomethanes in indoor swimming pools   总被引:3,自引:0,他引:3  
The study evaluated occupational exposure to trihalomethanes (THMs) in indoor swimming pools. Thirty-two subjects, representing the whole workforce employed in the five public indoor swimming pools in the city of Modena (Northern Italy) were enrolled. Both environmental and biological monitoring of THMs exposure were performed. Environmental concentrations of THMs in different areas inside the swimming pools (at the poolside, in the reception area and in the engine-room) were measured as external exposure index, while individual exposure of swimming pool employees was estimated by THMs concentration in alveolar air. The levels of THMs observed in swimming pool water ranged from 17.8 to 70.8 microg/l; the mean levels of THMs in ambient air were 25.6+/-24.5 microg/m3 in the engine room, 26.1+/-24.3 microg/m3 in the reception area and 58.0+/-22.1 microg/m3 at the poolside. Among THMs, only chloroform and bromodichloromethane were always measured in ambient air, while dibromochloromethane was detected in ambient air rarely and bromoform only once. Biological monitoring results showed a THMs mean value of 20.9+/-15.6 microg/m3. Statistically significant differences were observed according to the main job activity: in pool attendants, THMs alveolar air were approximately double those observed in employees working in other areas of the swimming pools (25.1+/-16.5 microg/m3 vs. 14.8+/-12.3 microg/m3, P < 0.01). THMs in alveolar air samples were significantly correlated with THMs concentrations in ambient air (r = 0.57; P < 0.001). Indoor swimming pool employees are exposed to THMs at ambient air levels higher than the general population. The different environmental exposure inside the swimming pool can induce a different internal dose in exposed workers. The correlation found between ambient and alveolar air samples confirms that breath analysis is a good biological index of occupational exposure to these substances at low environmental levels.  相似文献   

12.
Several studies among adult populations showed that an array of outdoor and indoor sources of particles emissions contributed to personal exposures to atmospheric particles, with tobacco smoke playing a prominent role (J. Expo. Anal. Environ. Epidemiol. 6 (1996) 57, Environ. Int. 24 (1998) 405, Arch. Environ. Health 54 (1999) 95). The Vesta study was carried out to assess the role of exposure to traffic emissions in the development of childhood asthma. In this paper, we present data on 68 children aged 8-14 years, living in the metropolitan areas of Paris (n = 30), Grenoble (n = 15) and Toulouse (n = 23), France, who continuously carried, over 48 h, a rucksack that contained an active PM2.5 sampler. Data about home indoor sources were collected by questionnaires. In parallel, daily concentrations of PM10 in ambient air were monitored by local air quality networks. The contribution of indoor and outdoor factors to personal exposures was assessed using multiple linear regression models. Average personal exposure across all children was 23.7 microg/m3 (S.D. = 19.0 microg/m3), with local means ranging from 18.2 to 29.4 microg/m3. The final model explains 36% of the total between-subjects variance, with environmental tobacco smoke contributing for more than a third to this variability; presence of pets at home, proximity of the home to urban traffic emissions, and concomitant PM10 ambient air concentrations were the other main determinants of personal exposure.  相似文献   

13.
Although elevated nitrogen dioxide (NO2) exposures may exacerbate asthma, few studies have examined indoor NO2 levels in low-income, urban neighborhoods, where asthma prevalence is high. As part of the Healthy Public Housing Initiative, NO2 was measured in 77 homes within three Boston public housing developments, using Palmes tubes placed in the kitchen, living room, and outdoors. Air exchange rates (AERs) were assessed using a perfluorocarbon tracer technique. Overall NO2 levels were [mean (ppb)+/-s.d.]: kitchen (43+/-20, n=100), living room (36+/-17, n=102), outdoor (19+/-6, n=91). Indoor NO2 levels were significantly higher in the heating season (living room: 43 ppb vs. 26 ppb, kitchen: 50 ppb vs. 33 ppb), while AERs were significantly lower in the heating season (medians 0.49/h vs. 0.85/h). Significant univariate predictors of indoor concentrations include: outdoor NO2 levels, AERs, and occupancy. AERs and outdoor NO2 remained significant in multivariate models (P<0.05). A dummy variable for supplemental heating with gas stove was not significant (P=0.14), but had a large, positive coefficient. Indoor NO2 levels in this cohort are higher than those generally reported in residential US settings, associated in part with increased gas stove usage and decreased AERs during the heating season. PRACTICAL IMPLICATIONS: Indoor air quality is mainly a function of outdoor concentrations, indoor sources, ventilation, and residential behavior. Indoor exposures to nitrogen dioxide and other combustion pollutants may be elevated within low-income housing developments due to the presence of multiple sources, poor ventilation, small apartment size, and behavioral responses to apartment conditions (e.g. supplemental heating with gas stove). This information may be used by housing authorities and other landlords to decrease potential environmental stressors, through interventions such as source substitution and improved ventilation, particularly for sensitive sub-populations such as asthmatics.  相似文献   

14.
This study aimed at surveying lower secondary schools in southern Italy, in a highly polluted area. A community close to an industrial area and three villages in rural areas was investigated. Indoor temperature, relative humidity (RH), gaseous pollutants (CO2 and NO2), selected biological pollutants in indoor dust, and the indoor/outdoor mass concentration and elemental composition of PM2.5 were ascertained. Temperature and RH were within, or close to, the comfort range, while CO2 frequently exceeded the threshold of 1000 ppm, indicating inadequate air exchange rate. In all the classrooms, median NO2 levels were above the WHO threshold value. Dermatophagoides p. allergen concentration was below the sensitizing threshold, while high endotoxin levels were detected in the classrooms, suggesting schools may produce significant risks of endotoxin exposure. Concentration and solubility of PM2.5 elements were used to identify the sources of indoor particles. Indoor concentration of most elements was higher than outdoors. Resuspension was responsible for the indoor increase in soil components. For elements from industrial emission (Cd, Co, Ni, Pb, Sb, Tl, V), the indoor concentration depended on penetration from the outside. For these elements, differences in rural vs industrial concentrations were found, suggesting industrial sources may influence indoor air quality nearby schools.  相似文献   

15.
Godwin C  Batterman S 《Indoor air》2007,17(2):109-121
Indoor air quality (IAQ) parameters in 64 elementary and middle school classrooms in Michigan were examined for the purposes of assessing ventilation rates, levels of volatile organic compounds (VOCs) and bioaerosols, air quality differences within and between schools, and emission sources. In each classroom, bioaerosols, VOCs, CO(2), relative humidity, and temperature were monitored over one workweek, and a comprehensive walkthough survey was completed. Ventilation rates were derived from CO(2) and occupancy data. Ventilation was poor in many of the tested classrooms, e.g., CO(2) concentrations often exceeded 1000 ppm and sometimes 3000 ppm. Most VOCs had low concentrations (mean of individual species <4.5 microg/m(3)); bioaerosol concentrations were moderate (<6500 count per m(3) indoors, <41,000 count per m(3) outdoors). The variability of CO(2), VOC, and bioaerosol concentrations within schools exceeded the variability between schools. These findings suggest that none of the sampled rooms were contaminated and that no building-wide contamination sources were present. However, localized IAQ problems might remain in spaces where contaminant sources are concentrated and that are poorly ventilated. PRACTICAL IMPLICATIONS: Indoor air quality (IAQ) is a continuing concern for students, parents, teachers, and school staff, leading to many complaints regarding poor IAQ. Investigations of these complaints often include air sampling, which must be carefully conducted if representative data are to be collected. To better understand sampling results, investigators need to account for the variability of contaminants both within and between schools.  相似文献   

16.
J. Sundell 《Indoor air》2017,27(4):708-724
The scientific articles and Indoor Air conference publications of the indoor air sciences (IAS) during the last 50 years are summarized. In total 7524 presentations, from 79 countries, have been made at Indoor Air conferences held between 1978 (49 presentations) and 2014 (1049 presentations). In the Web of Science, 26 992 articles on indoor air research (with the word “indoor” as a search term) have been found (as of 1 Jan 2016) of which 70% were published during the last 10 years. The modern scientific history started in the 1970s with a question: “did indoor air pose a threat to health as did outdoor air?” Soon it was recognized that indoor air is more important, from a health point of view, than outdoor air. Topics of concern were first radon, environmental tobacco smoke, and lung cancer, followed by volatile organic compounds, formaldehyde and sick building syndrome, house dust‐mites, asthma and allergies, Legionnaires disease, and other airborne infections. Later emerged dampness/mold‐associated allergies and today's concern with “modern exposures‐modern diseases.” Ventilation, thermal comfort, indoor air chemistry, semi‐volatile organic compounds, building simulation by computational fluid dynamics, and fine particulate matter are common topics today. From their beginning in Denmark and Sweden, then in the USA, the indoor air sciences now show increasing activity in East and Southeast Asia.  相似文献   

17.
Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.  相似文献   

18.
Online measurements of indoor and outdoor ammonia (NH3) were conducted at a university building in Haidian District, Beijing, to investigate their variation characteristics, indoor-outdoor differences, influencing factors, and possible contribution of indoor NH3 to atmospheric NH3. Indoor NH3 mixing ratios varied greatly among the rooms of the same building. Indoor NH3 mixing ratio peaked at 1.43 ppm in a toilet. Both indoor and outdoor NH3 mixing ratios exhibited higher values during summer and lower values during winter and correlated significantly with relative humidity and temperature. Moreover, their daily mean mixing ratios were significantly correlated with each other. But indoor and outdoor NH3 in cold months exhibited quite different diurnal variations. During the measurement period, indoor NH3 mixing ratios were substantially higher than those outdoors, by an average factor of 3.1 (1.0–6.6). This indicates that indoor NH3 could be a source of outdoor atmospheric NH3. The contribution of indoor NH3 to atmospheric NH3 was estimated at 0.7 ± 0.5 Gg NH3-N·a−1, accounting for approximately 1.0 ± 0.7% of total emissions in Beijing and being comparable to industry, biomass combustion, and soil emissions, but lower than transportation emissions. The influence of COVID-19 control measures caused indoor and outdoor NH3 mixing ratios to decrease by 22.8% and 19.3%, respectively—attributable to decreased human activity and traffic flow.  相似文献   

19.
Yang W  Lee K  Chung M 《Indoor air》2004,14(2):105-111
Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor NO2 concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and NO2 source strength were estimated. Geometric means of ventilation rate were 1.44 air change per hour (ACH) in Brisbane, assuming a residential NO2 deposition constant of 1.05/h, and 1.36 ACH in Seoul, with the measured residential NO2 deposition constant of 0.94/h. Source strengths of NO2 were 15.8 +/- 18.2 and 44.7 +/- 38.1 microg/m3/h in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.  相似文献   

20.
Indoor air quality at nine shopping malls in Hong Kong.   总被引:5,自引:0,他引:5  
Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号