首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
钟华 《冶金分析》2019,39(9):14-20
高频燃烧红外吸收法测定碳属于相对测量法,需用含碳的标准物质如碳酸钠对仪器进行校准,该校准方法的关键在于选择合适的助熔剂条件使化学试剂、钢铁样品中碳的燃烧释放率达到一致。实验重点对助熔剂影响碳酸钠校准-高频燃烧红外吸收法测定钢铁中高含量碳(质量分数为1.0%~5.0%)的因素进行了研究。实验表明,按GB/T 223.86—2009标准所述,将碳酸钠校准样置于锡囊中,采用锡-铁-钨三元助熔剂进行测定,碳酸钠中碳的结果较钢铁标样的结果偏低,且随碳含量的增加,偏低现象更为显著,据此可以判断,若采用锡-铁-钨三元助熔剂,用碳酸钠校准时,所测得的钢铁样品中碳结果会高于认定值。锡量、纯铁屑量、钨粒量的3因素3水平的正交试验表明,锡助熔剂对测定的影响最为显著,加入锡助熔剂对碳酸钠校准样测定不利,且锡助熔剂对碳酸钠校准样中碳测定的影响较生铁标样更为明显。因此,实验采用铁-钨二元助熔剂进行测定,并对助熔剂的条件进行了优化,结果表明碳酸钠校准的助熔剂条件为在样品上方依次加入1.00g纯铁粉、2.0g钨粒,钢铁样品的条件为在样品上方依次加入2.0g钨粒、0.50g纯铁粉。采用上述优化的助熔剂条件测定碳酸钠校准样,并绘制校准曲线,碳质量分数的校准范围为1.00%~5.00%,校准曲线的线性相关系数达到0.9999。采用优化的助熔剂条件对8个高碳钢铁标样中的碳含量进行测定,测定值与认定值吻合,这说明碳酸钠校准样与钢铁样品中碳的燃烧释放率一致。将上述实验方法应用于5个钢铁生产样品中碳的测定,相对标准偏差(n=5)为0.21%~0.33%,结果与管式炉燃烧-重量法基本一致。  相似文献   

2.
钢铁中超低碳分析技术研究   总被引:2,自引:0,他引:2  
研究了应用红外碳硫分析仪测定钢铁中超低碳的分析方法。对陶瓷坩埚经过马弗炉和管式坩埚炉2次灼烧,用钨粒、锡粒、纯铁为助熔剂,获得低稳定的空白值。经无水碳酸钠基准物质校准仪器,用红外吸收法分析钢铁中超低碳取得了良好的准确度和精密度。  相似文献   

3.
铜铅锌矿石是冶炼钢铁的重要原材料,而其中硫含量的高低会直接影响钢铁的脆性、流动性等性能。因此,准确快速测定铜铅锌矿石中硫含量对于冶炼此类矿石意义重大。选取与实际样品具有相似化学性质的多个铜铅锌矿石标准物质建立校准曲线以消除基体效应,以铁助剂和钨锡助剂为助熔剂,实现了高频燃烧红外吸收法对铜铅锌矿石中质量分数为0.106%~10.76%硫的测定。探讨了称样量、钨锡助剂用量、比较器水平、分析时间、坩埚是否需要加盖等因素对硫测定结果的影响,确定最佳实验条件如下:称样量为0.1000g、钨锡助剂用量为1.6g、比较器水平为1%、分析时间为50s、坩埚不加盖。结果表明,校准曲线线性相关系数为0.9999,方法检出限为0.0264%,定量限为0.106%。采用实验方法对不同铜铅锌矿石标准物质进行多次测定,相对误差均小于根据DZ/T 0130—2006《地质矿产实验室测试质量管理规范》得到的相对误差允许限。按照实验方法对铜铅锌矿石实际样品中硫平行测定11次,测定结果与燃烧碘量法、硫酸钡重量法结果无显著差异,相对标准偏差(RSD)在0.50%~4.6%之间。  相似文献   

4.
考虑到低合金钢试样加入钨锡助熔剂后试样燃烧释放完全,其坩埚内部比生铁试样埚底光滑,埚壁迸溅少,且二次坩埚的成本更低,故选择分析完低合金钢的坩埚作为二次坩埚用于磷铁中碳和硫的分析。实验表明,在二次坩埚中加入0.40~0.55g试样、1.2~1.3g钨锡助熔剂,无需空白校正即可实现高频燃烧红外吸收法对磷铁中碳和硫元素的同时测定。由于磷铁标准样品较少,不足以覆盖所有磷铁中碳或硫的含量范围,所以通过将低合金钢标准样品和磷铁标准样品ZBT384进行两两混合(总质量控制在(0.5±0.05)g之间)以配制校准样品系列。结果表明,碳在质量分数为0.05%~0.65%范围内,硫在质量分数为0.005%~0.14%范围内的校准曲线线性关系良好,碳和硫的相关系数分别为0.999 6和0.999 5。将实验方法应用于磷铁实际样品分析,测得碳和硫的相对标准偏差(RSD,n=7)分别为2.0%和3.5%。按照实验方法对磷铁标准样品和内控样品进行测定,测得结果与认定值或参考值的绝对误差均小于国家标准方法 YB/T 5339—2015或YB/T 5341—2015要求的允许差。  相似文献   

5.
刘攀  唐伟 《冶金分析》2017,37(11):64-68
研究了高频感应燃烧红外吸收法测定焊剂、焊条药皮和药芯焊丝药粉等焊接药剂中硫含量的方法。最佳工作条件为先将0.1~0.15g样品加入预先放置有0.3~0.5g铁屑的瓷坩埚中,再覆盖0.2g锡粒和1.7g钨粒;采用0.3~0.5g钢铁有证标准样品建立校准曲线(助熔剂为0.2g锡粒-1.7g钨粒)。结果表明,方法的测定下限为0.005%(高纯氧气)至0.008%(普通氧气)。将实验方法用于不同硫含量的焊接药剂实际样品的分析,结果的相对标准偏差(RSD,n=6)不大于7%,加标回收率为83%~107%。采用焊剂及矿石标准样品进行准确度验证,测定值与认定值相符合。  相似文献   

6.
高频燃烧红外吸收法测定锡锌铅青铜中硫   总被引:1,自引:0,他引:1       下载免费PDF全文
庄艾春 《冶金分析》2017,37(4):33-37
称取0.3 g纯铜助熔剂于坩埚底部,再称取0.4 g样品,上面覆盖1.0 g钨粒,以钢铁标准样品绘制校准曲线,建立了高频燃烧红外吸收法测定锡锌铅青铜中硫的方法。实验表明,当硫质量分数不大于0.01%时,测定低含量硫时应减去空白值;当硫质量分数大于0.01%时,空白值的影响可忽略。方法检出限为0.000 1%,方法测定下限为0.000 3%。用硫酸钾基准试剂配制的硫标准溶液进行方法验证,结果表明,测定值与理论值一致;按照实验方法测定由紫铜光谱标准样品5#、锡粒、纯锌、纯铅混合配制的锡锌铅青铜合成样品,测定值与理论值基本一致。利用实验方法对锡锌铅青铜样品中硫进行测定,测定结果的相对标准偏差(RSD,n=11)为0.71%~1.5%。按照实验方法在锡锌铅青铜样品中加入硫标准溶液进行加标回收试验,回收率在95%~103%之间。  相似文献   

7.
碳对铁硅硼非晶合金薄带的性能有重要影响。讨论了高频感应燃烧红外吸收法测定铁硅硼非晶合金薄带中碳含量的方法,优化了样品尺寸、称样量、助熔剂等关键参数。确定的最佳工作条件如下:将铁硅硼非晶合金薄带剪切为尺寸不大于5mm×5mm的碎片;称取0.2g样品于陶瓷坩埚中,按照0.2g锡-0.4g铁-1.7g钨,或0.2g锡-1.7g钨的顺序加入多元混合助熔剂;采用钢铁标准样品校准仪器。结果表明:样品尺寸对测定结果有显著影响,较大的样品尺寸会导致测定值偏低;称样量,助熔剂种类、用量及加入顺序对测定结果有轻微影响。采用0.2g锡-0.4g铁-1.7g钨作助熔剂时,方法空白值为(22±9.7)μg/g(n=10),检出限为0.003%,定量限为0.010%。采用0.2g锡-1.7g钨作助熔剂时,方法空白值为(4.4±6.7)μg/g(n=10),检出限为0.002%,定量限为0.007%。综上,实验方法的定量限为0.007%~0.010%。将实验方法用于铁硅硼非晶合金薄带实际样品分析,结果的相对标准偏差(RSD,n=8)小于3.5%,加标回收率为90%~107%。  相似文献   

8.
称取0.040 0 g试样,将试样置于灼烧过并铺有0.3 g五氧化二钒助熔剂的坩埚内,加入0.2 g锡粒,再覆盖0.15 g五氧化二钒助熔剂和 1.4 g钨粒,以硫酸钾绘制校准曲线,建立了高频燃烧红外吸收法测定铜精矿中硫质量分数为5.00%~40.00%的方法。实验表明,以积分面积为横坐标,硫绝对含量为纵坐标绘制校准曲线。校准曲线的线性方程为Y=37.02X-1.52,线性相关系数R=0.999 8。方法检出限为0.017%。采用实验方法对铜精矿实际样品中硫含量进行测定,所得结果与重量法或燃烧-滴定法基本一致。采用实验方法对铜精矿标准样品进行测定,测定值与认定值基本一致。对铜精矿实际样品和标准样品6次平行测定结果的相对标准偏差(RSD,n=6)为0.41%~0.72%。  相似文献   

9.
将坩埚于1 100 ℃马弗炉中灼烧4 h后自然冷却,置于干燥器中1 d内使用,且使用前在电炉上烘烤30 min,然后称取0.5 g试样、0.3 g纯铁和1.0 g钨锡粒加入到经过处理的坩埚中,以钢铁碳硫标样建立单点校准曲线,建立了高频燃烧-红外吸收法测定钴基钎料中碳和硫的方法。优化后仪器参数如下:高频功率为90%,吹扫和延迟时间均为10 s,炉头刷工作频率为5次。碳和硫的方法检测下限分别为0.000 64%和0.000 040%。采用方法对Co50NiCrWB、Co45NiCrWB两种钴基钎料样品中碳和硫分别进行测定,测得结果的相对标准偏差(RSD)分别为3.0%~5.1%和4.2%~9.0%,在Co50NiCrWB、Co45NiCrWB样品中加入Leco501-501-1#钢铁碳硫标样,在Co50NiCrWB样品中加入LECO 501-501-2#钢铁碳硫标样分别进行加标回收试验,回收率在91%~112%之间。  相似文献   

10.
钟华  刘凤君 《冶金分析》2018,38(9):20-25
采用高频燃烧红外吸收法,比较了标准方法GB/T 4333.10—1990(以下简称GB)和JIS G 1312-2∶2011(以下简称JIS)中的两种助熔剂条件对硅铁样品中碳的测定结果。试验现象和结果表明:GB方法测定时,熔液飞溅现象较JIS方法严重,导致其测定结果的精密度较JIS方法差。鉴于满足JIS方法中所用铁粉助熔剂的分析成本较高,实验对现有GB方法的助熔剂条件进行了改进,措施是在硅铁样品中混入三氧化钨粉,再加入铁、锡、钨助熔剂,然后采用高频燃烧红外吸收法对其中碳进行测定。试验结果表明三氧化钨粉能有效提高硅铁样品在铁、锡、钨条件下燃烧的稳定性。改进后的测定条件为:称取0.20g样品与0.5g三氧化钨粉在坩埚中混合,再加入0.6g纯铁屑、0.4g锡粒和1.5g钨粒。将实验方法应用于硅铁实际样品中0.006%~0.080%(质量分数)碳的测定,相对标准偏差(RSD,n=8)在0.8%~5.0%之间。在硅铁样品中加入碳标准溶液进行碳的加标回收试验,回收率为91%~120%。  相似文献   

11.
采用传统湿法测定铬铁中主次元素含量时操作繁琐、不易掌握;熔融制样-X射线荧光光谱法测定高碳铬铁中铬、硅和磷的含量已有应用。为拓宽X射线荧光光谱(XRF)检测铬铁的应用,采用四硼酸锂熔剂挂壁打底保护铂合金坩埚,以四硼酸锂和碳酸锂做熔剂,用过氧化钡和硝酸钠做氧化剂对样品进行处理,实现了X射线荧光光谱对铬铁中铬、硅、磷、钛的测定。先在高频熔融炉中对样品进行预氧化,经过预氧化处理将样品中的单质元素转化成氧化物,避免高温状态下单质元素与铂形成低温共熔体而腐蚀损坏铂金坩埚,解决了熔融法处理铬铁试样时容易腐蚀坩埚的难点。在最佳实验条件下,采用高碳、中碳、低碳铬铁标准样品和用高纯铁粉和铬铁标样配制的合成标样建立相关校准曲线,铬、硅、磷和钛校准曲线的相关系数均大于0.993。对高碳铬铁标准样品进行精密度考察,4种元素测定结果的相对标准偏差(RSD,n=11)在0.068%~3.9%范围内。对铬铁标准样品进行分析,测定值与认定值相吻合。采用实验方法对铬铁样品中各元素进行测定,所得结果和湿法测得值一致性较好。
  相似文献   

12.
实验以四硼酸锂挂壁形成熔剂坩埚来确保铂-金坩埚在氧化熔融过程中不被试样腐蚀,以硝酸(1+1)氧化溶解生铁样品,低温蒸发剩余液体,再加入碳酸锂熔融制备玻璃片,建立了X射线荧光光谱法(XRF)测定生铁中硅、锰、磷含量的方法。实验表明,四硼酸锂、碳酸锂和样品的质量比为30:5:1,加入3~5mL 300g/L的碘化铵溶液作脱模剂,在1050℃熔融20min制得的玻璃片强度高、质地均匀、检测面光洁。使用生铁、锰矿石、铁矿石标准物质建立硅、锰、磷校准曲线,校准曲线线性相关系数和回归精度均较好。硅、锰、磷的检出限在1.32~5.60μg/g之间。对同一生铁样品进行精密度考察,各元素测定结果的相对标准偏差(RSD,n=12)介于0.83%~1.8%之间;正确度结果表明,生铁标准样品的测定结果与认定值的误差在国标允许范围内。  相似文献   

13.
材料的循环利用是节能环保的一项战略举措。将废旧坩埚处理、再生后熔融试样,采用异标校正工作曲线的方法解决含铁尘泥标准物质欠缺的难题,利用高频感应红外吸收法对各类含铁尘泥中碳和硫含量的测定进行了研究。重点讨论了再生坩埚的处理、不同有证标准物质(CRM)及高纯碳酸钡校正工作曲线的方法、补偿比较水平和最短分析时间等参数的选取对测定结果的影响,得出在最佳试验条件下称取0.15g试样,加入0.2g锡-1.0g钨助熔剂即可将试样完全熔融。结果表明,方法中碳和硫的定量限分别为0.00022%和0.00018%。按照实验方法测定含铁尘泥样品中碳和硫,结果的相对标准偏差(RSD,n=11)均小于3%,回收率为99%~102%。方法用于测定各类含铁尘泥有证标准物质中碳和硫,测定值与认定值一致。  相似文献   

14.
熔融制样-X射线荧光光谱法(XRF)测定硅铁合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄坩埚的难题。硅铁样品以四硼酸锂-碳酸锂预氧化剂在石墨垫底瓷坩埚中高温预氧化熔融后,再将熔融物转移至铂-黄坩埚中,用四硼酸锂熔融制成玻璃熔片,实现了熔融制样-X射线荧光光谱法对硅铁合金中硅、磷、锰、铝、钙、铬的测定。实验讨论了预氧化熔融的熔剂体系及氧化方法、试样与熔剂的稀释比,结果表明,试样与熔剂以1∶35的稀释比,以10滴300g/L碘化钾溶液为脱模剂,在1100℃熔融30min,熔融制得的玻璃片均匀、透明、无气泡,符合测定要求。用具有浓度梯度的系列硅铁有证标准样品制作校准曲线,各待测元素校准曲线的线性相关系数均大于0.9995。方法应用于硅铁合金实际样品中硅、磷、锰、铝、钙、铬的测定, 结果的相对标准偏差(RSD,n=11)在0.1%~5.8%之间;正确度试验表明,硅铁标准样品的测定结果与认定值相符,硅铁实际样品的测定结果与国家标准方法测定值一致,能满足常规分析要求。  相似文献   

15.
熔融制样-X射线荧光光谱法测定萤石中主次成分   总被引:1,自引:0,他引:1       下载免费PDF全文
X射线荧光光谱法测定萤石中主次成分,需要解决准确测定氟含量的难题。试验采用无水四硼酸锂和碳酸锂混合熔剂,硝酸钠为氧化剂进行熔融制样,实现了X射线荧光光谱(XRF)对萤石中各组分含量的准确测定。探讨了熔融温度、稀释比、熔融时间等因素对氟含量测定的影响,确定了最佳试验条件。试验表明,当无水四硼酸锂与试样质量比(m无水四硼酸锂:m试样)为4:1、碳酸钠质量为0.500 0 g、硝酸钠质量为0.500 0 g、熔融温度为980 ℃、熔融时间为8 min时,氟、硫元素的损耗最小,且氟的荧光强度最大。在最佳试验条件下,得到氟化钙、二氧化硅、硫、磷含量测定的线性相关系数均达到0.995以上。对萤石标准样品进行精密度考察,氟化钙、磷、二氧化硅、硫测定结果的相对标准偏差(RSD,n=11)分别为0.31%、3.6%、0.72%、0.92%;采用实验方法测定萤石标准样品和实际样品,其测定值与认定值或湿法值一致,符合常规检测要求。  相似文献   

16.
研究了高频红外吸收法测定工业硅中碳含量的主要影响因素,包括坩埚选择、氧气纯度、助熔剂选择及加入方式、样品量、助熔剂与样品的混合方式以及质量配比等方面,确定了最佳的检测条件。结果表明,采用经过预处理的超低碳硫分析专用坩埚、高纯氧气和钨锡铁复合助熔剂,样品燃烧充分,碳释放完全,分析结果稳定,空白值最低为0.001 0%。采用实验方法对实际样品进行分析,结果的相对标准偏差为2.5%~4.4%;对工业硅标准样品分析时测量值与认定值一致。  相似文献   

17.
称取0.2g样品,置于预先盛有(0.300±0.005)g锡粒的坩埚内,覆盖(0.400±0.005)g纯铁和(2.000±0.005)g钨粒进行分析,建立了高频燃烧红外吸收法测定氮化硅铁中碳含量的分析方法。实验中,考虑到氮化硅铁标准样品较少,故选择由0.04g氮化硅标准样品JCRM R008和0.16g纯铁标准样品GBW 01148a混合配制的氮化硅铁合成校准试样(w(C)=0.025 7%)与氮化硅铁标准样品GSB 03-2469-2008(w(C)=0.35%)来绘制校准曲线。方法中碳的线性范围为0.025%~0.35%,检出限为0.000 45%。由0.10g氮化硅标准样品JCRM R008和0.10g纯铁标准样品GBW 01148a混合配制氮化硅铁合成样品1,以及由0.08g氮化硅铁标准样品GSB 03-2469-2008和0.12g氮化硅标准样品JCRM R006混合配制氮化硅铁合成样品2,采用实验方法对其中碳进行测定,测定值与认定值基本一致。采用实验方法对氮化硅铁实际样品中的碳进行测定,所得结果的相对标准偏差(RSD,n=6)为1.2%~1.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号