首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
X-ray diffraction (XRD) and electron microscopy investigations have been performed on Sc2O3-stabilized ZrO2 as-sintered and after aging in air or in wet-forming gas at 850°C for 1000 h. Some tetragonal to monoclinic transformation had occurred in the near-surface regions of 4 mol% Sc2O3 samples after aging; the phase transition was more severe for samples aged in the forming gas ambient. A decrease of ∼20% in electrical conductivity accompanied the aging. In 6 mol% Sc2O3 samples, although no cubic to tetragonal transformation was detected, both the electrical conductivity and the activation energy for ionic conductivity decreased significantly during aging. Ten mole percent Sc2O3 samples did not show appreciable change in electrical conductivity due to aging, although some near-surface cubic to rhombohedral transformation did occur. Sharpening of the (400)t XRD peak of Sc2O3-stabilzed tetragonal ZrO2 accompanies the change(s) in the electrical conductivity.  相似文献   

2.
The phase relations for the Sc2O3-Ta2O5 system in the composition range of 50-100 mol% Sc2O3 have been studied by using solid-state reactions at 1350°, 1500°, or 1700°C and by using thermal analyses up to the melting temperatures. The Sc5.5Ta1.5O12 phase, defect-fluorite-type cubic phase (F-phase, space group Fm 3 m ), ScTaO4, and Sc2O3 were found in the system. The Sc5.5Ta1.5O12 phase formed in 78 mol% Sc2O3 at <1700°C and seemed to melt incongruently. The F-phase formed in ∼75 mol% Sc2O3 and decomposed to Sc5.5Ta1.5O12 and ScTaO4 at <1700°C. The F-phase melted congruently at 2344°± 2°C in 80 mol% Sc2O3. The eutectic point seemed to exist at ∼2300°C in 90 mol% Sc2O3. A phase diagram that includes the four above-described phases has been proposed, instead of the previous diagram in which those phases were not identified.  相似文献   

3.
Additions of 1-20 mol% Sc2O3 or Y2O3 to MoSi2 eliminate glassy SiO2, which improves mechanical properties at both ambient and high temperatures. In particular, only 1 mol% ScO3 additions dramatically enhance three-point bending strength from 521 to 1081 MPa. Vickers hardness, Young's modulus, fracture toughness, and high-temperature strength are also improved by this low level of additive. The improvement of mechanical properties is attributed to the formation of crystalline silicates: Sc2Si2O7, Y2Si2O7, Y2SiO5, and Y4Si3O12, which are analyzed by XRD, SEM-EDS, and TEM-EDS methods.  相似文献   

4.
α-Al2O3-doped (8 mol % Sc2O3)ZrO2 composite solid electrolyte has been investigated in the fabrication of solid-state ceramic gas sensors. The microstructure and electrical conductivity of the composite solid electrolyte have been measured over a range of temperature from 240°C to 596°C. The composite solid electrolyte has been found to exhibit a higher conductivity compared with the commonly used (8 mol% Y2O3)ZrO2 at temperatures above ∼448°C. The sensing characteristics for NO2 detection have been studied in the temperature range of 500–650°C at the low concentration from 10 to 30 ppm and at high concentration from 100 to 500 ppm of NO2. The NO2 sensor was found to respond reproducibly and rapidly to the variations of NO2, concentration, indicating that the composite solid electrolyte has promising application as a solid electrolyte for on-board exhaust gas monitoring.  相似文献   

5.
The microstructure, crystal phase, electrical conductivity, and mechanical strength of less than 7-mol%-Sc2O3-doped zirconia ceramics fabricated by comparatively low-temperature sintering at 1200–1300°C for 1 h were investigated. Zirconia ceramics having a uniform microstructure (grain size < 0.5 μm) stabilized with 6 mol% Sc2O3 showed high electrical conductivity (0.15 S/cm at 1000°C) and high fracture strength (660 MPa). With the increase of Sc2O3 content from 3.5 to 7 mol%, the grain size, fracture strength, and electrical conductivity at 1000°C changed from 0.2 to 0.5 μm, 970 to 440 MPa, and 0.07 to >0.2 S/cm, respectively. Sc2O3-doped zirconia polycrystals with high fracture strength and high electrical conductivity are promising candidates for the electrolyte material of solid oxide fuel cells.  相似文献   

6.
The electrical conductivity of M2O3-ZrO2 compositions containing 6 to 24 mole % M2O3, where M represents La, Sm, Y, Yb, or Sc, was examined. Only Sm2O3, Y2O3, and Yb2O3 formed cubic solid solutions with ZrO2 over most of this substitutional range. Scandia forms a wide cubic solid solution region with ZrO2 at temperatures above 130°C whereas the cubic solid solution region at room temperature is narrow (6 to 8 mole % Sc2O3). Lanthana additions to ZrO2produced no fluorite-type cubic solid solutions within the compositional range investigated. Generally, the electrical conductivity of these cubic solid solutions increased as the size of the substituted cation decreased and the electrical conductivity for each binary system attained a maximum at about 10 to 12 mole % M2O3.  相似文献   

7.
Phase relations in the system Sc2O3-WO3 were characterized. Two stable binary compounds were, found. The 1:3 compound, SC2(WO4)3, melts congruently at 1640°±10°C and forms a simple eutectic with WO3 at ∼90 mol% WO3 and 1309°+10°C. The 3 : 1 compound, Sc6WO12, forms a simple eutectic with the 1:3 compound at -69 mol% WO2, and 1580°+10°C. The melting temperature of SC6WO12 was >1600°C.  相似文献   

8.
Electrical conduction in tetragonal β-Bi2O3 doped with Sb2O3 was investigated by measuring electrical conductivity, ionic transference number, and Seebeck coefficient. The β-Bi2O3 doped with 1 to 10 mol% Sb2O3 was stable up to 600°C and showed an oxygen ionic and electronic mixed conduction, where the electron conduction was predominant at low oxygen pressures. The oxygen-ion conductivity showed a maximum at 4 mol% Sb2O3, whereas the activation energy for the ionic conduction remained unchanged for 4 to 10 mol% Sb2O3-doped specimens. These results were interpreted in terms of the oxygen vacancy concentration and the distortion of the tetragonal structure. The electron conductivity and its oxygen pressure dependence decreased with increasing Sb2O3 content. The fact that Sb5+ is partially reduced by excess electrons in heavily doped β specimens at low oxygen pressures is explained.  相似文献   

9.
The ionic conductivity of the hafnia-scandia, hafnia-yttria, and hafnia-rare earth solid solutions with high dopant concentrations of 8, 10, and 14 mol% was measured in air at 600° to 1050°C. Impedance spectroscopy was used to obtain lattice conductivity. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. For all investigated dopant concentrations the ionic conductivity was shown to decrease as the dopant radius increased. The activation enthalpy for conduction was found to increase with dopant ionic radius. The fact that the highest ionic conductivity among 14-mol%-doped systems was obtained with HfO2─Sc2O3 suggested that the radius ratio approach should be used to predict the electrical conductivity behavior of HfO2─R2O3 systems. A qualitative model based on the Kilner's lattice parameter map does not seem to apply to these systems. For the three systems HfO2─Yb2O3, HfO2─Y2O3, and Hf2O3─Sm2O3 a conductivity maximum was observed near the dopant concentration of 10 mol%. Deep vacancy trapping is responsible for the decrease in the ionic conductivity at high dopant concentrations. Formation of microdomains of an ordered compound cannot explain the obtained results. A comparison between the ionic conductivities of doped HfO2 and ZrO2 systems indicated that the ionic conductivities of HfO2 systems are 1.5 to 2.2 times lower than the ionic conductivities of ZrO2 systems.  相似文献   

10.
Zirconia doped with 3.2–4.2 mol% (6–8 wt%) yttria (3–4YSZ) is currently the material of choice for thermal barrier coating topcoats. The present study examines the ZrO2-Y2O3-Ta2O5/Nb2O5 systems for potential alternative chemistries that would overcome the limitations of the 3–4YSZ. A rationale for choosing specific compositions based on the effect of defect chemistry on the thermal conductivity and phase stability in zirconia-based systems is presented. The results show that it is possible to produce stable (for up to 200 h at 1000°–1500°C), single (tetragonal) or dual (tetragonal + cubic) phase chemistries that have thermal conductivity that is as low (1.8–2.8W/m K) as the 3–4YSZ, a wide range of elastic moduli (150–232 GPa), and a similar mean coefficient of thermal expansion at 1000°C. The chemistries can be plasma sprayed without change in composition or deleterious effects to phase stability. Preliminary burner rig testing results on one of the compositions are also presented.  相似文献   

11.
Zirconia-rich subsolidus phase relationships in the ZrO2–Sc2O3 and ZrO2–In2O3 systems were investigated. Phase inconsistencies in the ZrO2–Sc2O3 system resulted from a diffusionless cubic-to-tetragonal ( t' ) phase transformation not being recognized in the past. Through three different measuring techniques, along with microstructural observations, the solubility limits of the tetragonal and cubic phases were determined.  相似文献   

12.
We report here the fabrication of transparent Sc2O3 ceramics via vacuum sintering. The starting Sc2O3 powders are pyrolyzed from a basic sulfate precursor (Sc(OH)2.6(SO4)0.2·H2O) precipitated from scandium sulfate solution with hexamethylenetetramine as the precipitant. Thermal decomposition behavior of the precursor is studied via differential thermal analysis/thermogravimetry, Fourier transform infrared spectroscopy, X-ray diffractometry, and elemental analysis. Sinterability of the Sc2O3 powders is studied via dilatometry. Microstructure evolution of the ceramic during sintering is investigated via field emission scanning electron microscopy. The best calcination temperature for the precursor is 1100°C, at which the resultant Sc2O3 powder is ultrafine (∼85 nm), well dispersed, and almost free from residual sulfur contamination. With this reactive powder, transparent Sc2O3 ceramics having an average grain size of ∼9 μm and showing a visible wavelength transmittance of ∼60–62% (∼76% of that of Sc2O3 single crystal) have been fabricated via vacuum sintering at a relatively low temperature of 1700°C for 4 h.  相似文献   

13.
The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol% Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3- x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log p O2=−20 (where p O2 is given in units of atm), which indicates practical usefulness as an ionic conductor.  相似文献   

14.
Binary Sb2O3-GeO2 glasses containing 45 mol% Sb2O3 and ternary Sb2O3-B2O3-GeO2 glasses containing 50 mol% GeO2 were prepared. Their densities (volumes), refractive indices, and infrared spectra were determined, and their colors and high-temperature viscosities were estimated visually. Small amounts of Sb2O3 (∼10 mol%) appear to perturb neither the Ge-O-Ge network nor those B-O-Ge networks with small B/Ge ratios (∼0.2). The B-O-Ge networks with larger B/Ge ratios (∼1.0) depolymerize in the presence of even less Sb2O3. Amounts of Sb2O3 >10 mol% appear to depolymerize the Ge-O-Ge and Ge-O-B networks progressively, possibly with the formation of chains. A structurally sensitive ir isofrequency contour technique developed for ternary glass systems was applied successfully to these Sb2O3-B2O3-GeO2 glasses. These contours can thus readily detect significant network depolymerization in the absence of the usual network modifiers.  相似文献   

15.
The influence of heat treatment (800°C for 200 h) on the micro-structure of 8 mol% Sc2O3-ZrO2 was investigated by XRD and TEM. The starting material was initially characterized and found to contain predominantly cubic-fluorite phase grains, with <5% of the grain containing the rhombohedral β phase. The β phase was positively identified by the analysis of electron diffraction pattern and by quantitative energy dispersive X-ray analysis. On aging, the relative amount of β phase was found to increase to about 15 to 20% by XRD measurement; this was confirmed by TEM observation. The orientation relation between the different variants of the β phase within a grain was determined to be (100)r||(010)r, and the geometrical arrangement of these variants within the grain was deduced using a 21/2D imaging electron microscopy technique.  相似文献   

16.
A mathematical model of the liquidus surface based on a reduced polynomial method was proposed for the system HfO2-Y2O3-Er2O3. The results of calculations according to this model agree fairly well with the experimental data. Phase equilibria in the system HfO2-Y2O3-Er2O3 were studied on melted (as-cast) and annealed samples using X-ray diffraction (at room and high temperatures) and micro-structural and petrographic analyses. The crystallization paths in the system HfO2-Y2O3-Er2O3 were established. The system HfO2-Y2O3-Er2O3 is characterized by the formation of extended solid solutions based on the fluorite-type (F) form of HfO2 and cubic (C) and hexagonal (H) forms of Y2O3 and Er2O3. The boundary curves of these solid solutions have the minima at 2370°C (15. 5 mol% HfO2, 49. 5 mol% Y2O3) and 2360°C (10. 5 mol% HfO2, 45. 5 mol% Y2O3). No compounds were found to exist in the system investigated.  相似文献   

17.
TiO2(0–20 mol%)-3 mol% yttria-stabilized zirconia (3YSZ) ceramics were prepared by a solid-state reaction. With increasing TiO2 content in 3YSZ, the structure of the main phase changed from a monoclinic, tetragonal, and cubic mixture to a tetragonal single phase. Increasing TiO2 content in 3YSZ caused an increase in the average grain size of these ceramics. The thermal conductivity decreased from 4.1 to 2.1 at room temperature with an increase in the TiO2 content. The specific heat of non-TiO2-doped 3YSZ was slightly larger than all the doped TiO2–3YSZ at room temperature. When the TiO2 content was >8 mol% in 3YSZ, no abrupt expansion, shrinkage, or cracks were observed on heating and cooling these samples; thus, the thermal stability of 3YSZ was improved by TiO2 solid solution. The ionic conductivity of the samples decreased with increasing TiO2 solid solution.  相似文献   

18.
The influence of 0–16 mol% Sb2O3 substitution for P2O5 on the properties of ZnO–P2O5 glasses has been investigated. It was shown that Sb2O3 could participate in the glass network and thermal stability of the glasses decreased with increasing Sb2O3 content. Glass transition temperature T g, softening temperature T s, and water durability all decreased firstly (up to 6 mol% Sb2O3 added) and then increased. Substitution of 12 mol% Sb2O3 led to a 16°C decrease in T g and 30°C decrease in T s, and weight loss of the glass was only 0.42 mg/cm2, which is ∼11 times lower than that of the glass without Sb2O3 after immersion in deionized water at 90°C for 1 day. The glass containing 12 mol% Sb2O3 might be a substitute for Pb-based glasses in some applications.  相似文献   

19.
Electrical properties of single-crystal, cubic ZrO2 solid solutions containing 10.0, 12.5, and 15.0 mol% Gd2O3 were investigated. Electrical conductivities were measured by a two-terminal ac technique up to 831°C in air, and the observed data were compared with those reported for polycrystalline materials. Electrical conductivity and activation energy increased, and preexponential factor decreased with Gd2O3 content.  相似文献   

20.
Phase equilibrium studies of compound formation and liquidus and solidus surfaces of the system K2O-BaO-SiO2 are presented. The system contains 3 ternary compounds: K4BaSi3O9, K8BaSi10O25, and K2Ba3Si8O20. Both high and low polymorphs of the third have fields on the ternary liquidus surface. Solid solution with SiO2 depresses the high-low inversion from 1030°C at K2Ba3Si8O20 to 835°C at 70.2 mol% SiO2. Data for 20 liquidus invariant points were found; 8 are thermal maxima and 12 are eutectics or peritectics. The isofracts of quenched glasses were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号