首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
采用激光加工技术在Ti6Al4V合金表面构建点阵微结构,利用自组装分子膜技术在微结构表面沉积低表面能物质,制备疏水/超疏水表面。采用自制测试系统测试液滴在试样表面的静态接触角和滚动角,用高速摄像机拍摄液滴滴落到试样表面的运动过程。结果表明,经激光加工和低表面能修饰可构建Ti6Al4V疏水/超疏水表面,其最大接触角为151.4°,表面静态接触角随点阵间隔的增大而减小;液滴静态接触角与液滴滴落高度相关,同一表面上的液滴静态接触角由最后一次滴落高度决定。液滴滴落到水平试样表面的铺展系数由试样表面粗糙度和静态接触角决定,表面粗糙度和静态接触角越大,液滴铺展系数越小。当滴落高度从0 mm增大到20 mm时,铺展系数的增大幅度约为50%。  相似文献   

2.
超疏水性表面的微纳结构改变极大影响了液体蒸发行为,在超疏水性材料工程应用方面具有重要研究价值。 采用氧等离子体处理(OPT)和八氟环丁烷等离子体聚合沉积(FPD)的两步等离子体纳米织构化法在聚丙烯表面制备纳米线和纳米锥结构,研究具有不同纳米织构聚丙烯超疏水性表面的去离子水滴在 30 ℃和 60 ℃温度下的蒸发行为,并对其蒸发机制进行讨论和分析。 结果表明:液滴在超疏水性表面总蒸发时间随 FPD 时间的增加变短。 液滴蒸发初期,液滴在聚丙烯表面处于 Cassie 态,此时主要传热方式为聚丙烯表面通过气体与液滴间接传热,液滴均匀蒸发,蒸发模式为恒定接触角(CCA)模式;随蒸发时间增加,液滴在表面的浸润状态依次转变为 Marmur 态和 Wenzel 态,主要传热方式变为聚丙烯表面与液滴直接传热,液滴蒸发加快,蒸发模式转变为混合(Mixed)模式。 聚丙烯表面纳米织构的尺寸增大和团簇增加导致液滴与超疏水性表面之间的气相占比减少,造成聚丙烯表面与液滴直接传热加强,促进了液滴从 CCA 到 Mixed 的蒸发模式转变。  相似文献   

3.
目的 结合金属锌和聚四氟乙烯(PTFE)改性技术,制备具有微纳复合结构表面的超疏水、防污染、自清洁建筑陶瓷。方法 基于现有工业陶瓷生产方法,在陶瓷釉料中掺入质量分数为60%的金属锌粉,通过高温烧结在陶瓷表面构建微纳复合结构,随后在其表面喷涂PTFE涂料进行低表面能处理,从而制得超疏水性建筑陶瓷。利用扫描电镜和光学轮廓仪,观察陶瓷表面微纳形貌。通过X射线能谱仪,对陶瓷表面的化学元素组成进行分析。使用光学测量系统,测量水滴在陶瓷表面的静态接触角和滚动角。根据测试结果分析5种烧结温度对陶瓷表面微纳结构和润湿性能的影响。结果 随着烧结温度的升高,陶瓷表面的均方根粗糙度(Sq)先增大后减小,对应的疏水性能先增强后减弱。在1 000℃(保温10 min)烧结温度下,Sq达到最大值,为(17.52±2.54)μm,表现出最优的超疏水性能,其静态接触角和滚动角分别为165.6°和8.2°,并且该表面展示出良好的防污能力和耐磨性。结论 液滴与陶瓷表面接触时,由金属锌粉烧结形成的微纳复合结构和低表面能的PTFE起耦合协同作用,陶瓷表面与液滴形成固-液-气三相复合...  相似文献   

4.
目的 探究硅烷偶联剂对铝合金超疏水表面性能的影响。方法 通过化学刻蚀并结合硅烷偶联剂修饰,在AMS 4037铝合金上制备超疏水表面。首先,通过HCl/H2O2混合液对铝合金进行刻蚀,在其表面构造具有多级蜂巢状的微/纳复合结构,再分别采用硅烷偶联剂和含氟硅烷进行疏水改性。详细研究2种改性剂的浓度对刻蚀铝合金表面润湿性的影响。采用接触角测量仪对材料表面润湿性和表面自由能进行测试,通过扫描电镜、能谱仪、激光共聚焦显微镜对表面微观结构和化学成分进行表征。同时,对2种硅烷偶联剂修饰的铝合金超疏水表面进行液滴冻结时间、防覆冰及自清洁行为测试。结果 铝合金表面的疏水性并不总是与改性剂的浓度呈正相关。当改性剂的质量分数为0.5%时,经硅烷偶联剂修饰后其刻蚀表面的接触角为156.3°,但滚动角大于30°,而经含氟硅烷修饰后其表面的接触角可达164.4°,滚动角为6°。液滴在硅烷偶联剂和含氟硅烷修饰后的超疏水表面的冻结时间分别为37、45 s。结论 相较于硅烷偶联剂修饰的刻蚀表面,含氟硅烷改性后其表面能更低,疏水效果更好。相较于未处理的铝合金表面,经硅烷偶联剂修饰后铝合金超疏水表面可显著抑制液滴的冻结过程,具有更长的冻结时间和延迟覆冰的能力,并且含氟硅烷修饰后表面的防冰性能更佳。自清洁实验也证明经含氟硅烷修饰后的表面具有更好的自清洁性能,其表面的微小灰尘颗粒更易被带走。  相似文献   

5.
超疏水性表面的液滴撞击是普遍存在的现象,研究具有不同尺寸和形状宏观结构的超疏水性表面对液滴撞击行为和接触时间的影响,对于其潜在应用具有重要的理论指导作用。 采用等离子体纳米织构化方法在平整与具有矩形、半圆形和三角形宏观结构的聚乙烯表面上制备超疏水性纳米线结构,通过高速摄像机观察超疏水性聚乙烯表面的液滴撞击行为,分析撞击液滴的形状演变和接触时间变化。 研究表明:超疏水性聚乙烯表面的矩形、半圆形和三角形宏观结构可显著改变液滴的撞击行为,液滴铺展后回缩过程的缩减加速了超疏水性表面液滴的弹离,有效降低了超疏水性表面的固液接触时间。 超疏水性聚乙烯表面的矩形、半圆形和三角形宏观结构尺寸小于液滴直径时,均可造成高速撞击液滴分裂,液滴的分裂回弹导致固液接触时间进一步降低,接触时间最低可达到约 4. 8 ms。 疏水性表面的宏观结构有利于固液接触时间降低,具有宏观结构的疏水表面展现出抗水滴高速撞击的去润湿性能。  相似文献   

6.
目的为了实现超疏水表面在实际生产生活中大规模应用,研制了一种具有大面积、低成本、可设计性和无有机溶剂等优点的水性超疏水涂料。方法以纳米级的气相二氧化硅和水性氟碳树脂为主要原料,以水为溶剂,通过氟硅烷疏水改性后获得了一种具有自清洁效应的超疏水涂料,借助场发射扫描电子显微镜、接触角测量仪、延时拍摄等手段对其进行了表征。结果该水性涂料可喷涂于各种软硬表面获得超疏水表面,其接触角均大于150°,滚动角均小于10°。水滴撞击实验表明,树脂增强的超疏水涂料经总体积为600 m L的连续水滴撞击后,其静态接触角依然大于150°,滚动角依然保持在10°以内。经砂纸打磨40周期后,水滴依然可以从其表面滚落。结论研制了一种以水为主要溶剂且价格低廉的水性超疏水涂料,将其喷涂于各种软、硬基底上均可获得均匀的超疏水涂层。该涂层还可以通过添加水性树脂来有效地增强其机械稳定性。  相似文献   

7.
采用光纤激光打标机在GH4169基底上刻蚀出微观结构,并通过在1.0%氟硅烷(FAS)乙醇溶液中改性降低表面能制备GH4169超疏水表面。该超疏水表面能达到接触角大于160°且滚动角小于10°。通过扫描电子显微镜(SEM)、能谱仪(EDS)、接触角测量仪对样品的微观结构、元素组成及润湿性进行表征和分析。采用单因素实验探究光纤激光打标机的扫描频率、功率以及速度对GH4169表面润湿性的影响规律,并对制备出的超疏水表面的粘附性和自清洁性进行了测试。  相似文献   

8.
郭永刚  吕志  朱亚超 《表面技术》2023,52(3):352-359, 369
目的 研究水滴在超亲/超疏水图案化铝合金表面润湿性、滚动阻力各向异性和定向运输特性。方法 采用激光刻蚀和氟硅烷修饰的方法,加工出具有微网格图案的超疏水6061铝合金表面。在超疏水铝合金表面再次激光刻蚀加工出长方形、平行四边形和圆形的超亲水微流体通道。研究了亲水沟槽宽度和深度对超亲/超疏水表面各向异性润湿和各向异性滚动的影响,分析了重力作用下水滴沿微流体通道的运动情况。利用SEM、三维轮廓仪观察铝合金表面形貌。利用接触角测量仪观测水滴与表面的接触角与滚动角大小。利用高速摄像机观察水滴的运动情况。结果 水滴在超亲/超疏水铝合金表面表现出明显的润湿性各向异性和滚动阻力各向异性。10μL水滴在0.1 mm宽度的直线型沟槽上铺展,平行接触角θcp仅为93.9°;而垂直于线型沟槽方向,垂直接触角θcv却为152.6°。平行滚动角θrp为21.5°,而垂直滚动角θrv大于90°,水滴无法滚落。基于超亲/超疏水表面滚动阻力各向异性的特性,制备了依靠重力驱动实现微流体定向运输的铝合金表面。结论 亲水沟槽宽度对水滴在超...  相似文献   

9.
先用电化学刻蚀在铝表面加工出超疏水性所需的微纳米粗糙结构,再通过直流阳极氧化在微纳米结构表面形成氧化层,并在高锰酸钾和硫酸的混合溶液中进行电解着色,最后通过氟硅烷修饰降低表面能后即可获得彩色的铝基超疏水表面。对样品表面的微观形貌、化学成分及润湿性进行了表征,结果表明:当电解加工时间为4 min时,铝表面颜色较暗,其超疏水性一般,水滴与表面的接触角达到153.1°,滚动角为1°;当电解加工时间为3 min时,铝表面为黄褐色,有较好的疏水性能,水滴与表面的接触角达到157.2°,滚动角为1°。  相似文献   

10.
目的通过简易环保的方法在铝合金基体上制备超疏水表面。方法采用电化学刻蚀和空气中保存法在铝合金基体上制备超疏水表面,用扫描电子显微镜、粗糙度测量仪和光学接触角测量仪对所得样品的微观形貌、表面粗糙度和润湿性进行分析。结果水滴在铝合金表面的接触角随着保存时间的增加而增大,电化学刻蚀所得超亲水表面逐渐表现出超疏水特性。12 d后表面趋于稳定,水滴在铝合金表面的接触角和滚动角分别为(152.3±4.5)°和(6.4±2.2)°。随着电化学刻蚀时间的增加,铝合金表面的润湿性减小。热处理可以使超疏水表面转为超亲水表面,在空气中保存后表面又恢复疏水性。结论试验所用中性环保的NaCl溶液作为电解液,极大地降低了试验对人体和环境的危害。并未使用有害的二次化学涂层作为表面能修饰材料,提高了试验的安全性和超疏水表面的稳定性。通过此简单环保的电化学刻蚀和空气中保存的方法成功地在铝合金基体上制备出了超疏水表面,所得表面展现出良好的疏水特性。  相似文献   

11.
在低温环境中,表面结冰会严重影响户外装备的运行效率和安全,基于疏水材料的新型被动式防除冰方法引起了广泛关注。超疏水表面凭借其优越的拒水、抑制冰核形成和降低冰黏附强度等能力,在防除冰技术领域表现出广阔的应用前景。激光加工技术具有高效率和灵活性,成为制备超疏水表面的有效方法,并被进一步用来研究表面的抗结冰性能。首先,概述了固体表面润湿理论和结冰机理。其次,综合评估了激光加工超疏水表面的抗结冰性能,包括静态水滴延迟结冰时间、动态水滴累积、冰黏附强度、延迟结霜与抗冻能力、表面积冰与除冰等方面。静态水滴延迟结冰时间受到水滴与表面接触界面的成核速率和传热速率的影响,动态水滴累积与表面润湿性密切相关,冰黏附强度反映了表面对冰的附着性和除冰的难易程度。超疏水表面具有显著的延迟结冰能力,但在低温高湿条件下,表面的超疏水性可能会减弱,甚至失效。除冰过程也可能破坏超疏水表面的微观结构,进而影响其持续的抗结冰性能。最后,对超疏水表面激光加工与抗结冰性能的未来研究方向进行了展望。  相似文献   

12.
研究结霜前期水蒸气在超疏水表面的凝结-冻结特性,有利于揭示超疏水表面的抑霜机理以及加深对结霜过程的认知。利用溶液刻蚀-沸水法制备了具有纳米结构的铝基表面,水滴与其形成的接触角达161.1°。通过微细观可视化观测,揭示结霜前期纳米结构超疏水表面的凝结-冻结特性,并与接触角为86.5°的裸露铝表面进行了对比分析。结果表明,超疏水表面凝结液滴的形状、尺寸和分布密度与裸露表面均存在差异,且液滴的冻结时间和冻结速率也不同。超疏水表面的液滴从17 min开始冻结,直到26 min才全部冻结,而裸露表面的液滴在4 min内就全部冻结。超疏水表面的纳米结构导致其与凝结液滴间的热阻增大,导热过程被削弱,从而抑制了液滴的生长与冻结。  相似文献   

13.
目的研究修饰微结构对疏水性材料表面浸润性的影响并指导制备超疏水表面。方法基于有限元软件建立了水滴在修饰不同微结构的疏水性表面的润湿模型,通过水滴表观接触角衡量分析了疏水材料表面修饰单一粗糙结构和复合粗糙结构对疏水性提升的效果,利用硅树脂掺杂微粒制备了不同粗糙度的疏水性涂层,涂层固化后测试其实际接触角大小,并与仿真结果对比。结果仿真结果显示,对水滴接触角为100°的表面修饰单一粗糙结构后,由于微结构形成的凹槽滞留空气,阻碍了水滴在表面铺展,使得水滴在表面的接触角增大至133°。在原微结构基础上修饰更小一级的微结构后,水滴在表面的接触角达168°,材料表面达到超疏水效果。实验中,随涂层表面粗糙度的提升,水滴在表面的接触角逐渐增大,掺混两种微粒的疏水涂层固化后,表面形成复合微观结构,水滴接触角达162°,与仿真结果拟合较好。结论在疏水性表面修饰微结构可显著提升其表面疏水性,修饰复合结构后可达到超疏水效果,此方法可用于实际工程制备超疏水表面。  相似文献   

14.
液滴在特定条件下撞击超疏水壁面会形成奇异射流现象,该现象产生机理及调控机理有待进一步研究。基于高速显微数码摄像技术,研究不同黏度(0.9~27.7m Pa·s)牛顿流体液滴撞击超疏水壁面(静态接触角为158°)的动态行为,归纳奇异射流发生的相图。通过水平集相界面追踪法,建立液滴撞击超疏水壁面的有限元数值模型。研究结果表明:对于中低黏度(甘油质量分数小于67wt.%)的液滴,奇异射流现象发生在特定的We数区间。随着液滴黏度的增大,发生奇异射流的We数阈值提高。当液滴的黏度大于14.2 mPa·s后,即使继续提高液滴撞击速度(We>100),奇异射流现象不再出现。奇异射流的产生与回缩阶段液滴内空腔的形成有关,且发生射流时空腔底部有很大的压力集中区。黏度的改变会影响液滴内空腔底部气液交界处的界面形态。随着黏度增加,空腔底部气液相界面将由上凸形转变为下凹形,无法形成向上的射流。奇异射流主要发生于Re在700~1 000的区域,且在该区间内奇异射流发生的We数区域较宽,可为液滴动力学行为调控提供理论依据。  相似文献   

15.
荷叶表面是自然界中典型的超疏水表面,具有"出淤泥而不染"的特性,近年来,荷叶表面的超疏水现象引起了科研人员的广泛关注.普通表面经构建微纳米级粗糙结构和低表面能修饰后,可获得超疏水表面.将水滴置于超疏水表面上,水滴与超疏水表面间存在一层空气垫,空气垫可有效减小水滴与表面的接触面积,使水滴无法浸入表面微观结构中,而被"支撑"在超疏水表面上,因此超疏水表面对水表现出优异的排斥性.这种特殊性能使超疏水表面在诸多领域都有极高的应用前景和市场价值.本文对超疏水基础原理进行了梳理,并对近期超疏水领域的研究成果进行了综述.首先介绍了超疏水表面的经典润湿理论,包括Young模型、Wenzel模型和Cassie-Baxter模型.然后归纳了诸多超疏水表面的制备方法及优缺点,包括激光刻蚀法、化学沉积法、化学刻蚀法、电化学沉积法、电化学刻蚀法、热氧化法、喷涂法等.在分析不同制造方法的基础上,进一步讨论了超疏水表面在自清洁、防雾、抗结冰、耐腐蚀、液体无损转移、油水分离、摩擦发电、芯片实验室、液滴传感器等领域的应用.最后,指出超疏水表面从实验室研究走向生产应用过程中所面临的问题,并对超疏水表面的未来发展进行展望.  相似文献   

16.
周宝玉  杨辉  冯伟  姜玉凤  陈跃 《表面技术》2020,49(5):170-176
目的优化电化学沉积法制备氢氧化铜纳米结构的实验参数,探究不同润湿性表面冷凝液滴尺寸分布规律。方法采用正交试验法,综合考虑电解液浓度、反应温度、极化时间、电流密度对接触角的影响,并通过SEM分析其表面形貌。同时,基于MATLAB软件,提出一种能快速精确识别、提取并统计冷凝液滴特征值的图像处理方法。结果正交试验最优参数为浓度0.5mol/L、温度5℃、时间2000s、电流密度4 mA/cm^2,此时样品表面接触角高达168.8°,滚动角小于3°。冷凝实验结果显示,在超疏水表面,冷凝液滴会频繁的合并自移除,液滴平均粒径最小,粒径在1~10μm范围内的液滴占比维持在50%左右;而在疏水与亲水样表面,冷凝液滴仅能发生合并现象,液滴平均粒径显著增大;冷凝后期,超疏水、疏水与亲水样表面冷凝液滴密度分别稳定在2000、1000、360 mm-2左右。结论纳米针结构能最大限度地降低固液接触面积,降低冷凝液滴粘附力,提高冷凝液滴合并自移除频率,减少冷凝液滴直径,提高冷凝液滴更新率,有望实现高效冷凝传热。同时通过与Image-J图像处理结果比对,验证了该冷凝液滴尺寸分布图像处理方法的可行性。  相似文献   

17.
液滴的冻结、积聚往往会对生产、生活造成不利影响,降低设备的运行功效,甚至严重危害生命安全。相较于需要借助外力的主动式防除冰技术,超疏水表面优异的拒水性使其能够实现被动式防除冰,且无需消耗外部能量,从而受到广泛关注。在此基础上,光热超疏水表面结合了主动防除冰和被动防除冰两方面的优势,能在结冰过程的各个时期发挥作用。比如,在结冰前促进液滴的自清除,在结冰时升温表面、延缓成核,在结冰后加速融冰、快速除冰,从而实现节能且高效的固体表面防除冰。概述了超疏水表面的润湿特性和防除冰机理,重点介绍了不同种类光热材料的光热转化机理,包括基于分子热振动的碳纳米光热材料,基于纳米粒子等离激元效应的光热材料,以及基于电子?空穴对非辐射弛豫的半导体光热材料。总结了常用的提高光热转化效率的思路方法,并对比了各类光热超疏水表面在结冰、防冰、除冰及光热响应等方面的性能。最后,针对光热超疏水材料在制备和实际应用中可能存在的问题,分析了未来的发展方向与面临的挑战,为光热超疏水材料的进一步发展与应用提供思路。  相似文献   

18.
甘园园  纪献兵  赵昶  孟宇航  苗政 《表面技术》2022,51(7):288-296, 323
目的 获得超疏水高、低黏附表面传热性能的差异及其规律。方法 以紫铜为基底,制备了亲水、超疏水高黏附与超疏水低黏附3类表面,研究了表面黏附性、蒸汽体积流量和冷却水流量等参数对冷凝传热的影响。结果 蒸汽体积流量较小时,3类表面中,超疏水低黏附表面因液滴受到的黏附力较小而具有最大的冷凝传热系数。当蒸汽体积流量等于4.5 L/min时,超疏水高黏附和超疏水低黏附表面的传热系数分别为14.5 kW/(m2.K)和19.8 kW/(m2.K),相比亲水表面分别强化了3.6和4.9倍。随蒸汽流量的增加,3类表面的冷凝传热系数均逐渐增大。但高黏附表面上的液滴因受到的气–液界面剪切作用较强,其传热系数的增幅在3类表面中最为显著。当蒸汽体积流量增大到6.0 L/min时,超疏水高黏附表面的冷凝传热系数可达105 kW/(m2.K),此时略大于超疏水低黏附表面的冷凝传热系数。结论 液滴所受黏附力大小和气–液界面剪切作用程度共同决定了液滴脱落直径和冷凝传热系数的大小。因此,两类超疏水表面的冷凝传热系数随蒸汽体积流量变化的曲线存在交叉点,且交叉点所对应的蒸汽体积流量随着冷却水流量的增大而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号