首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissolution kinetics of dense alumina discs in calcium aluminosilicate based melts was determined with a rotating disc technique at 1560 °C to 1590 °C, under a controlled atmosphere of Ar-CO-CO2. The effects of rotation speed and the concentration of iron and manganese oxides on the dissolution rate of alumina into slags were measured by monitoring the concentration of species in the slag. Analysis of the results obtained indicated that at low concentrations of these transition metal oxides in 53 pct CaO-5 pct MgO-12 pct SiO2-30 pct Al2O3 slags, the dissolution rate is most likely controlled by mass transfer in the slag phase. The rate data obtained also showed that the addition of iron oxide or manganese oxide results in considerable increase in the mass transfer by increasing the apparent diffusivities of species in the slag. Comparison of these results with published data on the diffusivities of species in similar slags are made and practical implications of the findings are briefly discussed.  相似文献   

2.
Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.  相似文献   

3.
The sulfur partition ratio between carbon-saturated iron and Na2O-SiO2 slags and the sulfide capacity of these slags have been measured at 1200 °C. The two measurements are consistent with each other and the results are compared with other investigations. These slags have higher sulfide capacities and partition ratios than equivalent CaO-based slags and are thus attractive desulfurizers. Both the sulfide capacity and the partition ratio increase with increasing Na2O. The activity coefficient of Na2S has been calculated; it also increases with increasing Na2O. The solubility of sulfur in a slag of 0.4 mole fraction Na2O is estimated to be 5 pct.  相似文献   

4.
The dissolution rate of dense lime specimens in calcium aluminosilicate based melts was measured at 1430 °C to 1600 °C in air, using a rotating disk/cylinder technique. The measured dissolution rates were strongly dependent on the rotation speed with the results indicating mass transfer in the slag phase to be a rate-limiting step. At a given rotation speed, the slag chemistry and temperature had strong effects on the dissolution rate. The diffusivity of CaO in the slag was calculated from the dissolution rate and solubility data, using known mass-transfer correlations. Addition of CaF2 MnO x , FeO x , and TiO2 to the slag increased the CaO diffusivity, while SiO2 had an opposite effect. Addition of CaF2 had the strongest effect and increased the diffusivity by a factor of 3 to 5 in the temperature range of 1500 °C to 1600 °C. The deduced activation energy for diffusion of CaO in these slags ranged from about 53 to 246 kJ/mole, depending on the concentration of additives used.  相似文献   

5.
The effects of reducing agent, CaF2 content, and reaction temperature upon the silicothermic reduction of MnO in the BaO-MnO-MgO-CaF2 (-SiO2) slags were investigated. Mn recovery was proportional to Si activity in the molten alloy. Moreover, 90 pct yield of Mn recovery was obtained under 5 mass pct CaF2 content and 1873 K (1600 °C) reaction temperature. Increasing CaF2 content above 5 pct yielded little or no further increase in Mn recovery, because it was accompanied by increased slag viscosity owing to the precipitation of high melting point compounds such as Ba2SiO4.  相似文献   

6.
The effect of Na2O on the equilibrium phosphorous distribution ratio between slag and iron or iron alloys, LP, has been measured for CaO-SiO2, CaO-FeOr-SiO2 (CaO or 2CaO·SiO2 saturated), and CaO-Al2-SiO2 slags. The addition of Na2O to CaO-SiO2 slags significantly increases LP and the phosphate capacity. A 25 pct CaO-25 pct Na2O-SiO2 slag has a distribution ratio nearly two orders of magnitude greater than a comparable binary 50 pct CaO-SiO2 slag. For the CaO-saturated slags containing 40 wt pct FeOT, the addition of 6 wt pct Na2O increases LP by a factor of 5. For the 2CaO·SiO2-saturated CaO-FeOT-SiO2 slag, there is an optimum FeOr content (20 wt pct) for dephosphorization, and 10 wt pct Na2O increases LP by a factor of 2. For reducing slags typically used in ladle metallurgy for Al-killed steels (50 pct CaO-40 pct Al2O3-10 pct SiO2), as little as 3 wt pct Na2O increases LP by a factor of 100. The present results indicate that small additions of Na2O to conventional steelmaking slags can greatly improve dephosphorization. Formerly Graduate Student, Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University.  相似文献   

7.
An experimental technique to prepare slags free from suspended matte was developed and applied to measure the solubility of copper in Fe- and SiO2-saturated fayalite slag at 1200°C. The copper solubility was found to be considerably greater than that attributed to oxidic loss assessed from the work of Ruddleet al and also greater than that in previously-studied slags containing sulfur together with lime or alumina. The solubility was related to the presence of sulfur in the slag, and the concept of sulfidic dissolution was developed on the basis of thermodynamic properties of matte and slag. The model was applied to commercial slag-matte systems, and the reduction of sulfur solubility by changing the slag composition was concluded to be the key in reducing copper losses to slag, especially for mattes containing less than 50 pct Cu. Formerly with Noranda Research Centre, Pointe Claire, Quebec.  相似文献   

8.
The present study delivers the measurements of viscosities in the SiO2-“FeO”-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of “FeO” by MgO was found to increase viscosity and activation energy of the SiO2-“FeO”-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.  相似文献   

9.
The solubility of indium was measured in the low-silica region (<20?mass pct SiO2) of the CaO-Al2O3-SiO2 system by a thermochemical equilibration technique. The dissolution mechanism of indium into the CaO-Al2O3-SiO2 slag at 1773?K (1500?°C) under a reducing atmosphere was elucidated. The indium solubility increases in the calcium silicate-based flux and decreases in the calcium aluminate-based flux with increasing oxygen partial pressure. Also, the solubility was found to decrease initially with increasing slag basicity until the basicity reached a critical level after which the solubility increases. This behavior is believed to indicate that the indium dissolution mechanism changes according to the basicity of the slag.  相似文献   

10.
The dissolution rate of calcium aluminate inclusions in CaO-SiO2-Al2O3 slags has been studied using confocal scanning laser microscopy (CSLM) at elevated temperatures: 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C). The inclusion particles used in this experimental work were produced in our laboratory and their production technique is explained in detail. Even though the particles had irregular shapes, there was no rotation observed. Further, the total dissolution time decreased with increasing temperature and decreasing SiO2 content in the slag. The rate limiting steps are discussed in terms of shrinking core models and diffusion into a stagnant fluid model. It is shown that the rate limiting step for dissolution is mass transfer in the slag at 1823 K and 1873 K (1550 °C and 1600 °C). Further investigations are required to determine the dissolution mechanism at 1773 K (1500 °C). The calculated diffusion coefficients were inversely proportional to the slag viscosity and the obtained values for the systems studied ranged between 5.64 × 10?12 and 5.8 × 10?10 m2/s.  相似文献   

11.
The distribution of Bi between liquid copper and calcium ferrite slag containing 24 wt pct CaO, iron silicate slag with 25 wt pct SiO2, and calcium iron silicate slags was measured at 1573 K (1300 °C) under controlled CO-CO2 atmosphere. The experimental results showed that bismuth distribution is affected by the oxygen partial pressure, and bismuth is likely to exist in slags in the 2+ oxidation state, i.e., as BiO. The distribution ratio between calcium ferrite slag and metal was found to be close to that of iron silicate slag. The Bi distribution ratio was found to decrease with increasing SiO2 and Al2O3 content in slag. Increasing temperature was found to decrease the Bi distribution ratio between slag and metal. Using the measured equilibrium data on Bi content of the metal and slag and composition dependence of the activity of Bi in liquid copper, the activity and hence activity coefficient of BiO in the slag was calculated. The close value of activity coefficient of BiO in both slags at the same oxygen partial pressure indicates that the CaO-BiO and SiO2-BiO interactions are likely to be at the same level, or the FeO x -BiO interaction is the predominant interaction for BiO in the slag. Therefore at a constant FeO x content in the slag, the CaO-BiO and SiO2-BiO interactions doesn’t affect \( \gamma_{\text{BiO}} \) significantly.  相似文献   

12.
Sulfide capacity of CaO-CaF2-SiO2 slags   总被引:1,自引:0,他引:1  
The sulfide capacityC S 2- = (pct S2-) · (P O 2/P S 2)1/2) of CaO-CaF2-SiO2 slags saturated with CaO, 3CaO · SiO2 or 2CaOSiO2 was determined at 1200 °C, 1250 °C, 1300 °C, and 1350 °C by equilibrating molten slag, molten silver, and CO-CO2 gas mixtures. Higher sulfide capacities were obtained for CaO-saturated slags. A drastic decrease was observed in those values when the ratio pct CaO/pct SiO2 is less than 2. The sulfur partition between carbon-saturated iron melts and presently investigated slags was calculated by using the sulfide capacities obtained and the activity coefficient of sulfur in carbon-saturated iron, which was also experimentally determined. For slags saturated with CaO, partitions of sulfur as high as 10,000 were obtained at 1300 °C and 1350 °C. Correlations between the sulfide capacity and other basicity indexes such as carbonate capacity and theoretical optical basicity were also discussed. Formerly with the Department of Metallurgy, The University of Tokyo.  相似文献   

13.
The wettability of silicon carbide by liquid CaO-SiO2 slags that contain 47 to 60 wt pct SiO2 was studied using the sessile drop wettability technique. The experiments were carried out in Ar and CO atmospheres. A small piece of slag was melted on SiC substrates under different heating regimes up to 1600 °C. It was found that the wetting is not significantly dependent on the temperature and the heating rate. However, the wettability is relatively high, and the wetting is higher for slags that contain lower SiO2 concentrations. Moreover, the wettability between the slags and SiC is dependent on the gas phase composition, and it is higher in Ar than that in CO. When the SiO2 concentration changes from 47 pct wt to 60 pct wt, the wetting angle changes from 20 deg to 73 deg in Ar and from 58 deg to 87 deg in a CO atmosphere. The formation and bursting of gas bubbles also was observed after some contact time, which indicates that the wetting system is a reactive type. However, microscopic studies indicated that no metal phase exists at the slag/silicon–carbide interface. Therefore, it was concluded that chemical reactions between the slag and SiC take place and that SiO2 is slowly reduced to form CO and SiO gases. Based on the experimental data, the dependence of the Girifalco–Good coefficient on the slag composition and the relationship between the interfacial tension of CaO-SiO2 slags and SiC also were estimated.  相似文献   

14.
The solubility of carbon and nitrogen in the CaF2-CaO-SiO2-Al2O3 slag system was studied. The effects of the CaF2, extended basicity (CaO/(SiO2 + Al2O3)), and atmospheric conditions on the dissolution behavior of the carbon and nitrogen, as well as the correlations of the behaviors with the slag structure observed at 1773 K (1500 °C), are presented. Increases in the extended basicity and the CaF2 increased the solubility of carbon in the slag. In the case of nitrogen dissolution, a characteristic parabolic curve with an identifiable minimum was observed for the slag. This curve shape correlated with a change in the dominant mechanism of dissolution from an incorporated to a free nitride. The solubility of carbon in the mixture of CO with N2 was significantly higher than that of carbon in the mixture of CO with Ar and is likely due to the formation of cyanide. Thus, when carbon is present in significant quantities in the slag, the solubility of nitrogen in the slag increases. The degree of depolymerization of the slag with increased content of CaO/(SiO2 + Al2O3) and CaF2 was verified using Fourier transform infrared and Raman spectroscopy.  相似文献   

15.
The present study delivered the measurements of viscosities in SiO2-“FeO”-Al2O3 system in equilibrium with metallic Fe. The rotational spindle technique was used in the measurements at the temperature range of 1473 K to 1773 K (1200 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The Fe saturation condition was maintained by an iron plate placed at the bottom of the crucible. The equilibrium compositions of the slags were measured by EPMA after the viscosity measurements. The effect of up to 20 mol. pct Al2O3 on the viscosity of the SiO2-“FeO” slag was investigated. The “charge compensation effect” of the Al2O3 and FeO association has been discussed. The modified quasi-chemical viscosity model has been optimized in the SiO2-“FeO”-Al2O3 system in equilibrium with metallic Fe to describe the viscosity measurements of the present study.  相似文献   

16.
The slag-steel equilibrium reaction between the newly developed mold slag ND-MSL and 20Mn23AlV steel has been studied at high temperatures in the laboratory. The crystal morphology, microanalysis, and phase analysis of the original and final ND-MSL slags were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results show that, in the final ND-MSL slag, the constitution of SiO2 decreased by 0.7 wt pct and Al2O3 increased by 6.46 wt pct, while the melting temperature, viscosity, and crystallization rate increased by 62 K, 0.66 dPa s, and 15 pct, respectively. NaAlSi3O8 and CaAl2Si2O8 were found to be precipitated in the final ND-MSL slag. Both the original and final ND-MSL slags have a small amount of LiF crystal and good glass form. The ND-MSL slag has little change in the composition and properties compared with the two currently used mold slags.  相似文献   

17.
We investigated the effect of flux (lime) addition on the reduction behavior of iron oxide in copper slag by solid carbon at 1773 K (1500 °C). In particular, we quantified the recovery of iron by performing typical kinetic analysis and considering slag foaming, which is strongly affected by the thermophysical properties of slags. The iron oxide in the copper slag was consistently reduced by solid carbon over time. In the kinetic analysis, we determined mass transfer coefficients with and without considering slag foaming using a gas holdup factor. The mass transfer of FeO was not significantly changed by CaO addition when slag foaming was ignored, whereas the mass transfer of FeO when slag foaming was considered was at a minimum in the 20 mass pct CaO system. Iron recovery, defined as the ratio of the amount of iron clearly transferred to the base metal ingot to the initial amount of iron in the slag phase before reduction, was maximal (about 90 pct) in the 20 mass pct CaO system. Various types of solid compounds, including Mg2SiO4 and Ca2SiO4, were precipitated in slags during the FeO reduction process, and these compounds strongly affected the reduction kinetics of FeO as well as iron recovery. Iron recovery was the greatest in the 20 mass pct CaO system because no solid compounds formed in this system, resulting in a highly fluid slag. This fluid slag allowed iron droplets to fall rapidly with high terminal velocity to the bottom of the crucible. A linear relationship between the mass transfer coefficient of FeO considering slag foaming and foam stability was obtained, from which we concluded that the mass transfer of FeO in slag was effectively promoted not only by gas evolution due to reduction reactions but also by foamy slag containing solid compounds. However, the reduced iron droplets were finely dispersed in foamy and viscous slags, making actual iron recovery a challenge.  相似文献   

18.
The activity coefficient of SiO2 in SiO2-Al2O3-CaO slags with limited Al2O3 content was measured by equilibrating Fe-C-Si melt and slags at 1873 K (1600 °C). When the Al2O3 content was between 48 and 54 wt pct, the results show that $ \gamma_{{{\text{SiO}}_{ 2} }} $ rapidly decreases as the amount of SiO2 in the slag decreases. The equilibrium amounts of Si and Al in a Fe melt in equilibrium with SiO2-Al2O3-CaO slags were calculated based on the result of this study.  相似文献   

19.
The effect of Al2O3 and CaO/SiO2 on the viscosity of the CaO-SiO2-10 mass pct MgO-Al2O3 slags was studied at fully liquid temperatures of 1773 K (1500 °C) and below. At fixed CaO/SiO2 between 0.8 and 1.3, higher Al2O3 content increased the slag viscosity due to the polymerization of the aluminate structures. At fixed Al2O3 of 15 and 20 mass pct, increasing the CaO/SiO2 from 0.8 to 1.3 resulted in lower viscosity due to the depolymerization of the aluminate structure.  相似文献   

20.
Mg-spinel phase is known to be important for control of Cr leaching from Cr-containing slags. The objective of the present study is to get an understanding of the phase relationships in the CaO-MgO-SiO2-Cr2O3 system with a view to control the precipitation of Cr-spinel in the slag phase. The equilibrium phases in CaO-MgO-SiO2-Cr2O3 slag system in the range of 1673 K to 1873 K (1400 °C to 1600 °C) have been investigated experimentally and compared with the results from thermodynamic calculations. The slag compositions close to the industrial slag systems were chosen. The Cr2O3 and MgO contents in the slag were fixed to be 6 and 8 wt pct, respectively. The basicity (CaO/SiO2) of the slag was varied in the range of 1.0 to 2.0. The slags were synthesized at a pre-determined oxygen partial pressure (10?4) or air (2.13 × 104 Pa) at a temperature above the liquidus temperature. The samples were then soaked at targeted temperatures for 24 hours in controlled atmosphere in order to achieve the equilibrium state before quenching in water. Four different heat-treatment regimes (defined as Ia, Ib, II.a and II.b) in Section II–D) were used in the present experiments. The lower oxygen partial pressure was maintained by a suitable mixture of CO and CO2 gases. Phases present and their compositions in the quenched slags were studied using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction techniques. The chromium content in the phases present was analyzed using wavelength-dispersive spectrometer. The experimental results obtained are compared with the calculation results from Factsage software. The size of spinel crystals increased drastically after slow-cooling from 1873 K (1600 °C) followed by annealing at 1673 K (1400 °C) for 24 hours (heating regimes II) compared to samples being quenched directly after soaking at 1873 K (1600 °C) (heating regime I.a). It was found that the amount of foreign elements in the spinel phase, and other phases decreased after soaking at oxygen partial pressure of 10?4 Pa resulting in phases with less defects and foreign oxide contents compared to those treated in air. The size of spinel crystals was found to be larger in samples with lower basicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号