首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallic lithium (Li), considered as the ultimate anode, is expected to promise high‐energy rechargeable batteries. However, owing to the continuous Li consumption during the repeated Li plating/stripping cycling, excess amount of the Li metal anode is commonly utilized in lithium‐metal batteries (LMBs), leading to reduced energy density and increased cost. Here, an all‐solid‐state lithium‐metal battery (ASSLMB) based on a garnet‐oxide solid electrolyte with an ultralow negative/positive electrode capacity ratio (N/P ratio) is reported. Compared with the counterpart using a liquid electrolyte at the same low N/P ratios, ASSLMBs show longer cycling life, which is attributed to the higher Coulombic efficiency maintained during cycling. The effect of the species of the interface layer on the cycling performance of ASSLMBs with low N/P ratio is also studied. Importantly, it is demonstrated that the ASSLMB using a limited Li metal anode paired with a LiFePO4 cathode (5.9 N/P ratio) delivers a stable long‐term cycling performance at room temperature. Furthermore, it is revealed that enhanced specific energies for ASSLMBs with low N/P ratios can be further achieved by the use of a high‐voltage or high mass‐loading cathode. This study sheds light on the practical high‐energy all‐solid‐state batteries under the constrained condition of a limited Li metal anode.  相似文献   

2.
Novel composite separators containing metal–organic‐framework (MOF) particles and poly(vinyl alcohol) are fabricated by the electrospinning process. The MOF particles containing opened metal sites can spontaneously adsorb anions while allowing effective transport of lithium ions in the electrolyte, leading to dramatically improved lithium‐ion transference number tLi+ (up to 0.79) and lithium‐ion conductivity. Meanwhile, the incorporation of the MOF particles alleviates the decomposition of the electrolyte, enhances the electrode reaction kinetics, and reduces the interface resistance between the electrolyte and the electrodes. Implementation of such composite separators in conventional lithium‐ion batteries leads to significantly improved rate capability and cycling durability, offering a new prospective toward high‐performance lithium‐ion batteries.  相似文献   

3.
Lithium‐metal batteries (LMBs), as one of the most promising next‐generation high‐energy‐density storage devices, are able to meet the rigid demands of new industries. However, the direct utilization of metallic lithium can induce harsh safety issues, inferior rate and cycle performance, or anode pulverization inside the cells. These drawbacks severely hinder the commercialization of LMBs. Here, an up‐to‐date review of the behavior of lithium ions upon deposition/dissolution, and the failure mechanisms of lithium‐metal anodes is presented. It has been shown that the primary causes consist of the growth of lithium dendrites due to large polarization and a strong electric field at the vicinity of the anode, the hyperactivity of metallic lithium, and hostless infinite volume changes upon cycling. The recent advances in liquid organic electrolyte (LOE) systems through modulating the local current density, anion depletion, lithium flux, the anode–electrolyte interface, or the mechanical strength of the interlayers are highlighted. Concrete strategies including tailoring the anode structures, optimizing the electrolytes, building artificial anode–electrolyte interfaces, and functionalizing the protective interlayers are summarized in detail. Furthermore, the challenges remaining in LOE systems are outlined, and the future perspectives of introducing solid‐state electrolytes to radically address safety issues are presented.  相似文献   

4.
Batteries constructed via 3D printing techniques have inherent advantages including opportunities for miniaturization, autonomous shaping, and controllable structural prototyping. However, 3D‐printed lithium metal batteries (LMBs) have not yet been reported due to the difficulties of printing lithium (Li) metal. Here, for the first time, high‐performance LMBs are fabricated through a 3D printing technique using cellulose nanofiber (CNF), which is one of the most earth‐abundant biopolymers. The unique shear thinning properties of CNF gel enables the printing of a LiFePO4 electrode and stable scaffold for Li. The printability of the CNF gel is also investigated theoretically. Moreover, the porous structure of the CNF scaffold also helps to improve ion accessibility and decreases the local current density of Li anode. Thus, dendrite formation due to uneven Li plating/stripping is suppressed. A multiscale computational approach integrating first‐principle density function theory and a phase‐field model is performed and reveals that the porous structures have more uniform Li deposition. Consequently, a full cell built with a 3D‐printed Li anode and a LiFePO4 cathode exhibits a high capacity of 80 mA h g?1 at a charge/discharge rate of 10 C with capacity retention of 85% even after 3000 cycles.  相似文献   

5.
The large‐scale implementation of lithium metal batteries (LMBs) has long been plagued by the uncontrollable Li deposition triggered safety issues. Herein, a lithiophilic three‐dimensional Li anode scaffold, which is prepared by molten Li infusion aided by confined growth of low‐cost Zn clusters, is rationally constructed for high‐performance LMBs. Owing to the synergy of the carbon host and the effective regulation from the Zn nanoclusters, the large volumetric change of Li metal is well mitigated and shows a smooth and dendrite‐free behavior. The Li anode scaffold can deliver much improved Coulombic efficiency, superior rate performance, and long cycle lifespan with much lower voltage polarization. Furthermore, the half cells of Li anode scaffold paired with LiFePO4/LiCoO2/sulfur can achieve a higher specific capacity and longer stable cycling life than those with conventional Li foil. The Li|LFP cells can achieve a stable cycling over 250 cycles at 1C with a higher capacity retention of ≈90.8%, and a higher initial discharge capacity of 924.6 mAh g?1 with a high capacity retention over 300 cycles can also be obtained in Li|S cells at 1C. This work demonstrates a cost‐effective and scalable strategy for stable Li metal anode toward next‐generation and high‐performance LMBs.  相似文献   

6.
In this study, self‐synthesized lithium trifluoro(perfluoro‐tert‐butyloxyl)borate (LiTFPFB) is combined with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to formulate a novel 1 m dual‐salt electrolyte, which contains lithium difluorophosphate (LiPO2F2) additive and dominant carbonate solvents with low melting point and high boiling point. The addition of LiPO2F2 into this novel dual‐salt electrolyte dramatically improves cycleability and rate capability of a LiNi0.5Mn0.3Co0.2O2/Li (NMC/Li) battery, ranging from ?40 to 90 °C. The NMC/Li batteries adopt a Li–metal anode with low thickness of 100 µm (even 50 µm) and a moderately high cathode mass loading level of 10 mg cm?2. For the first time, this paper provides valuable perspectives for developing practical lithium–metal batteries over a wide temperature range.  相似文献   

7.
Solid polymer electrolytes (SPEs)‐based all‐solid‐state lithium–sulfur batteries (ASSLSBs) have attracted extensive research attention due to their high energy density and safe operation, which provide potential solutions to the increasing need for harnessing higher energy densities. There is little progress made, however, in the development of ASSLSBs to improve simultaneously energy density and long‐term cycling life, mostly due to the “shuttle effect” of lithium polysulfide intermediates in the SPEs and the low interfacial compatibility between the metal lithium anode and the SPE. In this work, the issues of solid/solid interfacial architecturing through atomic layer deposition of Al2O3 on poly(ethylene oxide)‐lithium bis(trifluoromethanesulfonyl)imide SPE surface are effectively addressed. The Al2O3 coating promotes the suppression of lithium dendrite formation for over 500 h. ASSLSBs fabricated with two layers of Al2O3‐coated SPE deliver high gravimetric/areal capacity and Coulombic efficiency, as well as excellent cycling stability and extremely low self‐discharge rate. This work provides not only a simple and effective approach to boost the electrochemical performances of SPE‐based ASSLSBs, but also enriches the fundamental understanding regarding the underlying mechanism responsible for their performance.  相似文献   

8.
Metal fluoride–lithium batteries with potentially high energy densities, even higher than lithium–sulfur batteries, are viewed as very promising candidates for next‐generation lightweight and low‐cost rechargeable batteries. However, so far, metal fluoride cathodes have suffered from poor electronic conductivity, sluggish reaction kinetics and side reactions causing high voltage hysteresis, poor rate capability, and rapid capacity degradation upon cycling. Herein, it is reported that an FeF3@C composite having a 3D honeycomb architecture synthesized by a simple method may overcome these issues. The FeF3 nanoparticles (10–50 nm) are uniformly embedded in the 3D honeycomb carbon framework where the honeycomb walls and hexagonal‐like channels provide sufficient pathways for the fast electron and Li‐ion diffusion, respectively. As a result, the as‐produced 3D honeycomb FeF3@C composite cathodes even with high areal FeF3 loadings of 2.2 and 5.3 mg cm?2 offer unprecedented rate capability up to 100 C and remarkable cycle stability within 1000 cycles, displaying capacity retentions of 95%–100% within 200 cycles at various C rates, and ≈85% at 2C within 1000 cycles. The reported results demonstrate that the 3D honeycomb architecture is a powerful composite design for conversion‐type metal fluorides to achieve excellent electrochemical performance in metal fluoride–lithium batteries.  相似文献   

9.
Sodium‐ion batteries (SIBs) toward large‐scale energy storage applications has fascinated researchers in recent years owing to the low cost, environmental friendliness, and inestimable abundance. The similar chemical and electrochemical properties of sodium and lithium make sodium an easy substitute for lithium in lithium‐ion batteries. However, the main issues of limited cycle life, low energy density, and poor power density hamper the commercialization process. In the last few years, the development of electrode materials for SIBs has been dedicated to improving sodium storage capacities, high energy density, and long cycle life. The insertion type spinel Li4Ti5O12 (LTO) possesses “zero‐strain” behavior that offers the best cycle life performance among all reported oxide‐based anodes, displaying a capacity of 155 mAh g?1 via a three‐phase separation mechanism, and competing for future topmost high energy anode for SIBs. Recent reports offer improvement of overall electrode performance through carbon coating, doping, composites with metal oxides, and surface modification techniques, etc. Further, LTO anode with its structure and properties for SIBs is described and effective methods to improve the LTO performance are discussed in both half‐cell and practical configuration, i.e., full‐cell, along with future perspectives and solutions to promote its use.  相似文献   

10.
In response to the call for safer high‐energy‐density storage systems, high‐voltage solid‐state Li metal batteries have attracted extensive attention. Therefore, solid electrolytes are required to be stable against both Li anode and high‐voltage cathodes; nevertheless, the requirements still cannot be completely satisfied. Herein, a heterogeneous multilayered solid electrolyte (HMSE) is proposed to broaden electrochemical window of solid electrolytes to 0–5 V, through different electrode/electrolyte interfaces to overcome the interfacial instability problems. Oxidation‐resistance poly(acrylonitrile) (PAN) is in contact with the cathode, while reduction tolerant polyethylene glycol diacrylate contacts with Li metal anode. A Janus and flexible PAN@Li1.4Al0.4Ge1.6(PO4)3 (80 wt%) composite electrolyte is designed as intermediate layer to inhibit dendrite penetration and ensure compact interface. Paired with LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2 cathodes, which are rarely used in solid‐state batteries, the solid‐state Li metal batteries with HMSE exhibit excellent electrochemical performance including high capacity and long cycle life. Besides, the Li||Li symmetric batteries maintain a stable polarization less than 40 mV for more than 1000 h under 2 mA cm?2 and effective inhibition of dendrite formation. This study offers a promising approach to extend the applications of solid electrolytes for high‐voltage solid‐state Li metal batteries.  相似文献   

11.
Potassium‐ion batteries (KIBs) are promising alternatives to lithium‐ion batteries because of the abundance and low cost of K. However, an important challenge faced by KIBs is the search for high‐capacity materials that can hold large‐diameter K ions. Herein, copper oxide (CuO) nanoplates are synthesized as high‐performance anode materials for KIBs. CuO nanoplates with a thickness of ≈20 nm afford a large electrode–electrolyte contact interface and short K+ ion diffusion distance. As a consequence, a reversible capacity of 342.5 mAh g?1 is delivered by the as‐prepared CuO nanoplate electrode at 0.2 A g?1. Even after 100 cycles at a high current density of 1.0 A g?1, the capacity of the electrode remains over 206 mAh g?1, which is among the best values for KIB anodes reported in the literature. Moreover, a conversion reaction occurs at the CuO anode. Cu nanoparticles form during the first potassiation process and reoxidize to Cu2O during the depotassiation process. Thereafter, the conversion reaction proceeds between the as‐formed Cu2O and Cu, yielding a reversible theoretical capacity of 374 mAh g?1. Considering their low cost, easy preparation, and environmental benignity, CuO nanoplates are promising KIB anode materials.  相似文献   

12.
Sodium (Na) metal is one of the most promising electrode materials for next‐generation low‐cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co‐doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N‐ and S‐containing functional groups on the carbon nanotubes induce the NSCNTs to be highly “sodiophilic,” which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na‐metal‐based anode (Na/NSCNT anode) exhibits a dendrite‐free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium–oxygen (Na–O2) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na–O2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next‐generation high‐energy‐density sodium‐metal batteries.  相似文献   

13.
The practical applications of lithium–sulfur (Li–S) batteries are seriously limited by the undesirable polysulfide shuttling and lithium dendrite growth. Herein, a multifunctional membrane is designed and prepared by coating a lithiated Nafion (Li@Nafion) layer and an Al2O3 layer on the two sides of a routine polymer membrane (polypropylene/polyethylene/polypropylene, PEP). The Li@Nafion layer faced to the sulfur cathode builds a “polysulfide‐phobic” surface to restrain the shuttle effect via Coulomb repulsion, while the Al2O3 layer with a uniform porous structure aids in regulating homogeneous Li+ fluxes to achieve stable Li electrodeposition. As a result, the Li//Li symmetric cell with a Li@Nafion/PEP/Al2O3 (LNPA) separator realizes stable Li plating/striping even after 1000 h at a high current density (5 mA cm?2). Moreover, the Li–S batteries incorporating LNPA separators not only can achieve excellent outstanding cyclic stability at an ultrahigh sulfur loading (7.6 mg cm?2), but also exhibit impressive electrochemical performance at an elevated temperature (60 °C). The rational design of the LNPA separator presents new insights to develop high‐performance Li–S batteries.  相似文献   

14.
Solid electrolytes are one of the most promising electrolyte systems for safe lithium batteries, but the low ionic conductivity of these electrolytes seriously hinders the development of efficient lithium batteries. Here, a novel class of graphene‐analogues boron nitride (g‐BN) nanosheets confining an ultrahigh concentration of ionic liquids (ILs) in an interlayer and out‐of‐layer chamber to give rise to a quasi‐liquid solid electrolyte (QLSE) is reported. The electron‐insulated g‐BN nanosheet host with a large specific surface area can confine ILs as much as 10 times of the host's weight to afford high ionic conductivity (3.85 × 10?3 S cm?1 at 25 °C, even 2.32 × 10?4 S cm?1 at ?20 °C), which is close to that of the corresponding bulk IL electrolytes. The high ionic conductivity of QLSE is attributed to the enormous absorption for ILs and the confining effect of g‐BN to form the ordered lithium ion transport channels in an interlayer and out‐of‐layer of g‐BN. Furthermore, the electrolyte displays outstanding electrochemical properties and battery performance. In principle, this work enables a wider tunability, further opening up a new field for the fabrication of the next‐generation QLSE based on layered nanomaterials in energy conversion devices.  相似文献   

15.
All‐solid‐state Li–S batteries are promising candidates for next‐generation energy‐storage systems considering their high energy density and high safety. However, their development is hindered by the sluggish electrochemical kinetics and low S utilization due to high interfacial resistance and the electronic insulating nature of S. Herein, Se is introduced into S cathodes by forming SeSx solid solutions to modify the electronic and ionic conductivities and ultimately enhance cathode utilization in all‐solid‐state lithium batteries (ASSLBs). Theoretical calculations confirm the redistribution of electron densities after introducing Se. The interfacial ionic conductivities of all achieved SeSx–Li3PS4 (x = 3, 2, 1, and 0.33) composites are 10?6 S cm?1. Stable and highly reversible SeSx cathodes for sulfide‐based ASSLBs can be developed. Surprisingly, the SeS2/Li10GeP2S12–Li3PS4/Li solid‐state cells exhibit excellent performance and deliver a high capacity over 1100 mAh g?1 (98.5% of its theoretical capacity) at 50 mA g?1 and remained highly stable for 100 cycles. Moreover, high loading cells can achieve high areal capacities up to 12.6 mAh cm?2. This research deepens the understanding of Se–S solid solution chemistry in ASSLB systems and offers a new strategy to achieve high‐performance S‐based cathodes for application in ASSLBs.  相似文献   

16.
Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic-liquid (IL) electrolyte composed of 1-ethyl-3-methylimidazolium (EMIm) cations and high-concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite-free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm−2. Li anodes paired with lithium cobalt oxide (LiCoO2) and lithium nickel cobalt manganese oxide (LiNi0.8Co0.1Mn0.1O2, NCM 811) cathodes exhibit 99.6–99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g−1 and ≈765 Wh kg−1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li–NMC 811 full batteries.  相似文献   

17.
The practical application of lithium–sulfur (Li–S) batteries is hindered by the “shuttle” of lithium polysulfides (LiPS) and sluggish Li–S kinetics issues. Herein, a synergistic strategy combining mesoporous architecture design and defect engineering is proposed to synthesize multifunctional defective 3D ordered mesoporous cobalt sulfide (3DOM N‐Co9S8?x) to address the shuttling and sluggish reaction kinetics of polysulfide in Li–S batteries. The unique 3DOM design provides abundant voids for sulfur storage and enlarged active interfaces that reduce electron/ion diffusion pathways. Meanwhile, X‐ray absorption spectroscopy shows that the surface defect engineering tunes the CoS4 tetrahedra to CoS6 octahedra on Co9S8, endowing abundance of S vacancies on the Co9S8 octahedral sites. The ever‐increasing S vacancies over the course of electrochemical process further promotes the chemical trapping of LiPS and its conversion kinetics, rendering fast and durable Li–S chemistry. Benefiting from these features, the as‐developed 3DOM N‐Co9S8?x/S cathode delivers high areal capacity, superb rate capability, and excellent cyclic stability with ultralow capacity fading rate under raised sulfur loading and low electrolyte content. This design strategy promotes the development of practically viable Li–S batteries and sheds lights on the material engineering in related energy storage application.  相似文献   

18.
Potassium‐ion batteries (PIBs) are one of the emerging energy‐storage technologies due to the low cost of potassium and theoretically high energy density. However, the development of PIBs is hindered by the poor K+ transport kinetics and the structural instability of the cathode materials during K+ intercalation/deintercalation. In this work, birnessite nanosheet arrays with high K content (K0.77MnO2?0.23H2O) are prepared by “hydrothermal potassiation” as a potential cathode for PIBs, demonstrating ultrahigh reversible specific capacity of about 134 mAh g?1 at a current density of 100 mA g?1, as well as great rate capability (77 mAh g?1 at 1000 mA g?1) and superior cycling stability (80.5% capacity retention after 1000 cycles at 1000 mA g?1). With the introduction of adequate K+ ions in the interlayer, the K‐birnessite exhibits highly stabilized layered structure with highly reversible structure variation upon K+ intercalation/deintercalation. The practical feasibility of the K‐birnessite cathode in PIBs is further demonstrated by constructing full cells with a hard–soft composite carbon anode. This study highlights effective K+‐intercalation for birnessite to achieve superior K‐storage performance for PIBs, making it a general strategy for developing high‐performance cathodes in rechargeable batteries beyond lithium‐ion batteries.  相似文献   

19.
Rechargeable lithium (Li) metal batteries (LMBs) with ultrahigh-nickel (Ni) layered oxide cathodes offer a great opportunity for applications in electrical vehicles. However, increasing Ni content inherently arouses a tradeoff between specific capacity and electrochemical cyclability due to the aggressive side reactions with electrolyte contributed by the highly reactive Ni species. Here, a protective and stable cathode/electrolyte interphase featuring enriched and evenly-distributed LiF is in situ formed on ultrahigh-Ni cathode LiNi0.94Co0.06O2 (NC) with an advanced ether-based localized high-concentration electrolyte (LHCE), which concurrently shows good compatibility with Li metal anode. Subsequently, the NC cathode can deliver high capacity retentions of 81.4% after 500 cycles at 25 °C and 91.6% after 100 cycles at 60 °C in the voltage range of 2.8–4.4 V in Li||NC cells at 1C cycling rate (1.5 mA cm−2). Meanwhile, the conductive electrode/electrolyte interphases formed in LHCE enable a high reversible capacity of about 209 mAh g−1 at 3C charging rate. This work provides an effective approach and important insight from the perspective of in situ ultrahigh-Ni cathode/electrolyte interphase protection for high energy–density, long-lasting LMBs.  相似文献   

20.
The safety hazards and cycle instability of lithium metal anodes (LMA) constitute significant barriers to progress in lithium metal batteries. This situation is worse in Li–O2 batteries because the LMA is prone to be chemically attacked by O2 shuttled from the cathode. Notwithstanding, efforts on LMA are much sparse than those on the cathode in the realm of Li–O2 batteries. Here, a novel lithium salt of Li[(CF3SO2)(n‐C4F9SO2)N] (LiTNFSI) is reported, which can effectively suppress the parasitic side reactions and dendrite growth of LMA during cycling and thereby significantly enhance the overall reversibility of Li–O2 batteries. A variety of advanced research tools are employed to scrutinize the working principles of the LiTNFSI salt. It is revealed that a stable, uniform, and O2‐resistive solid electrolyte interphase is formed on LMA, and hence the “cross‐talk” between the LMA and O2 shuttled from the cathode is remarkably inhibited in LiTNFSI‐based Li–O2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号